Fatima Venzi. Tecnologia do Blogger.

RSS

HISTÓRIA DOS NÚMEROS



APRESENTAÇÃO

                         Este trabalho é fruto de pesquisas feitas a busca de respostas para questionamentos feitos pelo professor (a) no curso de Metodologia do Ensino da Matematica, onde deveria fazer um breve relato, porem ao estudar, verifiquei que não deveria ocultar aquilo que me era disposto em muitos intens, para que futuramente o mesmo me servisse de material de estudo.
                        Desta forma, procurei responder as questões o mais completo possível.
                                                                                                                                                                                              FLAVIO MARQUES DA SILVA GUEDES

A noção de número e suas extraordinárias generalizações estão intimamente ligadas à história da humanidade. E a própria vida está impregnada de matemática: grande parte das comparações que o homem formula, assim como gestos e atitudes cotidianas, aludem conscientemente ou não a juízos aritméticos e propriedades geométricas. Sem esquecer que a ciência, a indústria e o comércio nos colocam em permanente contato com o amplo mundo da matemática.

A LINGUAGEM DOS NÚMEROS

Em todas as épocas da evolução humana, mesmo nas mais atrasadas, encontra-se no homem o sentido do número. Esta faculdade lhe permite reconhecer que algo muda em uma pequena coleção (por exemplo, seus filhos, ou suas ovelhas) quando, sem seu conhecimento direto, um objeto tenha sido retirado ou acrescentado.
O sentido do número, em sua significação primitiva e no seu papel intuitivo, não se confunde com a capacidade de contar, que exige um fenômeno mental mais complicado. Se contar é um atributo exclusivamente humano, algumas espécies de animais parecem possuir um sentido rudimentar do número. Assim opinam, pelo menos, observadores competentes dos costumes dos animais. Muitos pássaros têm o sentido do número. Se um ninho contém quatro ovos, pode-se tirar um sem que nada ocorra, mas o pássaro provavelmente abandonará o ninho se faltarem dois ovos. De alguma forma inexplicável, ele pode distinguir dois de três.

O CORVO ASSASSINADO

Um senhor feudal estava decidido a matar um corvo que tinha feito ninho na torre de seu castelo. Repetidas vezes tentou surpreender o pássaro, mas em vão: quando o homem se aproximava, o corvo voava de seu ninho, colocava-se vigilante no alto de uma árvore próxima, e só voltava à torre quando já vazia. Um dia, o senhor recorreu a um truque: dois homens entraram na torre, um ficou lá dentro e o outro saiu e se foi. O pássaro não se deixou enganar e, para voltar, esperou que o segundo homem tivesse saído. O estratagema foi repetido nos dias seguintes com dois, três e quatro homens, sempre sem êxito. Finalmente, cinco homens entraram na torre e depois saíram quatro, um atrás do outro, enquanto o quinto aprontava o trabuco à espera do corvo. Então o pássaro perdeu a conta e a vida.
As espécies zoológicas com sentido do número são muito poucas (nem mesmo incluem os monos e outros mamíferos). E a percepção de quantidade numérica nos animais é de tão limitado alcance que se pode desprezá-la. Contudo, também no homem isso é verdade. Na prática, quando o homem civilizado precisa distinguir um número ao qual não está habituado, usa conscientemente ou não - para ajudar seu sentido do número - artifícios tais como a comparação, o agrupamento ou a ação de contar. Essa última, especialmente, se tornou parte tão integrante de nossa estrutura mental que os testes sobre nossa percepção numérica direta resultaram decepcionantes. Essas provas concluem que o sentido visual direto do número possuído pelo homem civilizado raras vezes ultrapassa o número quatro, e que o sentido tátil é ainda mais limitado.

LIMITAÇÕES VÊM DE LONGE

Os estudos sobre os povos primitivos fornecem uma notável comprovação desses resultados. Os selvagens que não alcançaram ainda o grau de evolução suficiente para contar com os dedos estão quase completamente disprovidos de toda noção de número. Os habitantes da selva da África do Sul não possuem outras palavras numéricas além de um, dois e muitos, e ainda essas palavras estão desvinculadas que se pode duvidar que os indígenas lhes atribuam um sentido bem claro.
Realmente não há razões para crer que nossos remotos antepassados estivessem mais bem equipados, já que todas as linguagens européias apresentam traços destas antigas limitações: a palavra inglesa thrice, do mesmo modo que a palavra latina ter, possui dois sentidos: "três vezes" e "muito". Há evidente conexão entre as palavras latinas tres (três) e trans (mais além). O mesmo acontece no francês: trois (três) e très (muito).
Como nasceu o conceito de número? Da experiência? Ou, ao contrário, a experiência serviu simplesmente para tornar explícito o que já existia em estado latente na mente do homem primitivo? Eis aqui um tema apaixonante para discussão filosófica.
Julgando o desenvolvimento dos nossos ancestrais pelo estado mental das tribos selvagens atuais, é impossível deixar de concluir que sua iniciação matemática foi extremamente modesta. Um sentido rudimentar de número, de alcance não maior que o de certos pássaros, foi o núcleo do qual nasceu nossa concepção de número. Reduzido à percepção direta do número, o homem não teria avançado mais que o corvo assassinado pelo senhor feudal. Todavia, através de uma série de circunstâncias, o homem aprendeu a completar sua percepção limitada de número com um artifício que estava destinado a exercer influência extraordinária em sua vida futura. Esse artifício é a operação de contar, e é a ele que devemos o progresso da humanidade.

O NÚMERO SEM CONTAGEM

Apesar disso, ainda que pareça estranho, é possível chegar a uma idéia clara e lógica de número sem recorrer a contagem. Entrando numa sala de cinema, temos diante de nós dois conjuntos: o das poltronas da sala e o dos espectadores. Sem contar, podemos assegurar se esses dois conjuntos têm ou não igual número de elementos e, se não têm, qual é o de menor número. Com efeito, se cada assento está ocupado e ninguém está de pé, sabemos sem contar que os dois conjuntos têm igual número. Se todas as cadeiras estão ocupadas e há gente de pé na sala, sabemos sem contar que há mais pessoas que poltronas.
Esse conhecimento é possível graças a um procedimento que domina toda a matemática, e que recebeu o nome de correspondência biunívoca. Esta consiste em atribuir a cada objeto de um conjunto um objeto de outro, e continuar assim até que um ou ambos os conjuntos se esgotem.
A técnica de contagem, em muitos povos primitivos, se reduz precisamente a tais associações de idéias. Eles registram o número de suas ovelhas ou de seus soldados por meio de incisões feitas num pedaço de madeira ou por meio de pedras empilhadas. Temos uma prova desse procedimento na origem da palavra "cálculo", da palavra latina calculus, que significa pedra.

A IDÉIA DE CORRESPONDÊNCIA

A correspondência biunívoca resume-se numa operação de "fazer corresponder". Pode-se dizer que a contagem se realiza fazendo corresponder a cada objeto da coleção (conjunto), um número que pertence à sucessão natural: 1,2,3...
A gente aponta para um objeto e diz: um; aponta para outro e diz: dois; e assim sucessivamente até esgotar os objetos da coleção; se o último número pronunciado for oito, dizemos que a coleção tem oito objetos e é um conjunto finito. Mas o homem de hoje, mesmo com conhecimento precário de matemática, começaria a sucessão numérica não pelo um mas por zero, e escreveria 0,1,2,3,4...
A criação de um símbolo para representar o "nada" constitui um dos atos mais audaciosos da história do pensamento. Essa criação é relativamente recente (talvez pelos primeiros séculos da era cristã) e foi devida às exigências da numeração escrita. O zero não só permite escrever mais simplesmente os números, como também efetuar as operações. Imagine o leitor - fazer uma divisão ou multiplicação em números romanos! E no entanto, antes ainda dos romanos, tinha florescido a civilização grega, onde viveram alguns dos maiores matemáticos de todos os tempos; e nossa numeração é muito posterior a todos eles.

DO RELATIVO AO ABSOLUTO

Pareceria à primeira vista que o processo de correspondência biunívoca só pode fornecer um meio de relacionar, por comparação, dois conjuntos distintos (como o das ovelhas do rebanho e o das pedras empilhadas), sendo incapaz de criar o número no sentido absoluto da palavra. Contudo, a transição do relativo ao absoluto não é difícil.
Criando conjuntos modelos, tomados do mundo que nos rodeia, e fazendo cada um deles caracterizar um agrupamento possível, a avaliação de um dado conjunto fica reduzida à seleçào, entre os conjuntos modelos, daquele que possa ser posto em correspondência biunívoca com o conjunto dado.
Começou assim: as asas de um pássaro podiam simbolizar o número dois, as folhas de um trevo o número três, as patas do cavalo o número quatro, os dedos da mão o número cinco. Evidências de que essa poderia ser a origem dos números se encontram em vários idiomas primitivos.
É claro que uma vez criado e adotado, o número se desliga do objeto que o representava originalmente, a conexão entre os dois é esquecida e o número passa por sua vez a ser um modelo ou um símbolo. À medida que o homem foi aprendendo a servir-se cada vez mais da linguagem, o som das palavras que exprimiam os primeiros números foi substituindo as imagens para as quais foi criado. Assim os modelos concretos iniciais tomaram a forma abstrata dos nomes dos números. É impossível saber a idade dessa linguagem numérica falada, mas sem dúvida ela precedeu de vários milhões de anos a aparição da escrita.
Todos os vestígios da significação inicial das palavras que designam os números foram perdidos, com a possível excessão de cinco (que em várias línguas queria dizer mão, ou mão estendida). A explicação para isso é que, enquanto os nomes dos números se mantiveram invariáveis desde os dias de sua criação, revelando notável estabilidade e semelhança em todos os grupos linguísticos, os nomes dos objetos concretos que lhes deram nascimento sofreram uma metamorfose completa.

 PALAVRAS QUE REPRESENTAM NÚMEROS EM ALGUMAS LÍNGUAS INDO-EUROPÉIAS:
Grego arcaico
Latim
Alemão
Inglês
Francês
Russo
1
en
unus
eins
one
un
odyn
2
duo
duo
zwei
two
deux
dva
3
tri
tres
drei
three
trois
tri
4
tetra
quatuor
vier
four
quatre
chetyre
5
pente
quinque
fünf
five
cinq
piat
6
hex
sex
sechs
six
six
chest
7
hepta
septem
sieben
seven
sept
sem
8
octo
octo
acht
eight
huit
vosem
9
ennea
novem
neun
nine
neuf
deviat
10
deca
decem
zehn
ten
dix
desiat
100
hecaton
centum
hundert
hundred
cent
sto
1000
xilia
mille
tausend
thousand
mille
tysiatsa

Fonte: Dicionário Enciclopédico Conhecer - Abril Cultural

2 - HISTÓRIA DA GEOMETRIA
Uma estranha construção feita pelos antigos persas para estudar o movimento dos astros. Um compasso antigo. Um vetusto esquadro e, sob ele, a demonstração figurada do teorema de Pitágoras. Um papiro com desenhos geométricos e o busto do grande Euclides. São etapas fundamentais no desenvolvimento da Geometria. Mas, muito antes da compilação dos conhecimentos existentes, os homens criavam, ao sabor da experiência, as bases da Geometria. E realizavam operações mentais que depois seriam concretizadas nas figuras geométricas.    
UMA MEDIDA PARA A VIDA
As origens da Geometria (do grego medir a terra) parecem coincidir com as necessidades do dia-a-dia. Partilhar terras férteis às margens dos rios, construir casas, observar e prever os movimentos dos astros, são algumas das muitas atividades humanas que sempre dependeram de operações geométricas. Documentos sobre as antigas civilizações egípcia e babilônica comprovam bons conhecimentos do assunto, geralmente ligados à astrologia. Na Grécia, porém, é que o gênio de grandes matemáticos lhes deu forma definitiva. Dos gregos anteriores a Euclides, Arquimedes e Apolônio, consta apenas o fragmento de um trabalho de Hipócrates. E o resumo feito por Proclo ao comentar os "Elementos" de Euclides, obra que data do século V a.C., refere-se a Tales de Mileto como o introdutor da Geometria na Grécia, por importação do Egito.
Pitágoras deu nome a um importante teorema sobre o triângulo-retângulo, que inaugurou um novo conceito de demonstração matemática. Mas enquanto a escola pitagórica do século VI a.C. constituía uma espécie de seita filosófica, que envolvia em mistério seus conhecimentos, os "Elementos" de Euclides representam a introdução de um método consistente que contribui há mais de vinte séculos para o progresso das ciências. Trata-se do sistema axiomático, que parte dos conceitos e proposições admitidos sem demonstração (postulados o axiomas) para construir de maneira lógica tudo o mais. Assim, três conceitos fundamentais - o ponto, a reta e o círculo - e cinco postulados a eles referentes servem de base para toda Geometria chamada euclidiana, útil até hoje, apesar da existência de geometrias não-euclidianas baseadas em postulados diferentes (e contraditórios) dos de Euclides.

O CORPO COMO UNIDADE

As primeiras unidades de medida referiam-se direta ou indiretamente ao corpo humano: palmo, pé, passo, braça, cúbito. Por volta de 3500 a.C. - quando na Mesopotâmia e no Egito começaram a ser construídos os primeiros templos - seus projetistas tiveram de encontrar unidades mais uniformes e precisas. Adotaram a longitude das partes do corpo de um único homem (geralmente o rei) e com essas medidas construíram réguas de madeira e metal, ou cordas com nós, que foram as primeiras medidas oficiais de comprimento.

ÂNGULOS E FIGURAS

Tanto entre os sumérios como entre os egípcios, os campos primitivos tinham forma retangular. Também os edifícios possuíam plantas regulares, o que obrigava os arquitetos a construírem muitos ângulos retos (de 90º). Embora de bagagem intelectual reduzida, aqueles homens já resolviam o problema como um desenhista de hoje. Por meio de duas estacas cravadas na terra assinalavam um segmento de reta. Em seguida prendiam e esticavam cordas que funcionavam à maneira de compassos: dois arcos de circunferência se cortam e determinam dois pontos que, unidos, secionam perpendicularmente a outra reta, formando os ângulos retos.
O problema mais comum para um construtor é traçar, por um ponto dado, a perpendicular a uma reta. O processo anterior não resolve este problema, em que o vértice do ângulo reto já está determinado de antemão. Os antigos geômetras, o solucionavam por meio de três cordas, colocadas de modo a formar os lados de um triângulo-retângulo. Essas cordas tinham comprimentos equivalentes a 3, 4 e 5 unidades respectivamente. O teorema de Pitágoras explica porque: em todo triângulo-retângulo, a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa (lado oposto ao ângulo reto). E 32+42=52, isto é, 9+16=25.
Qualquer trio de números inteiros ou não que respeitem tal relação definem triângulos-retângulos, que já na antiguidade foram padronizados na forma de esquadros.

PARA MEDIR SUPERFÍCIES

Os sacerdotes encarregados de arrecadar os impostos sobre a terra provavelmente começaram a calcular a extensão dos campos por meio de um simples golpe de vista. Certo dia, ao observar trabalhadores pavimentando com mosaicos quadrados uma superfície retangular, algum sacerdote deve ter notado que, para conhecer o total de mosaicos, bastava contar os de uma fileira e repetir esse número tantas vezes quantas fileiras houvesse. Assim nasceu a fórmula da área do retângulo: multiplicar a base pela altura.
Já para descobrir a área do triângulo, os antigos fiscais seguiram um raciocínio extremamente geométrico. Para acompanhá-lo, basta tomar um quadrado ou um retângulo e dividí-lo em quadradinhos iguais. Suponhamos que o quadrado tenha 9 "casas" e o retângulo 12. Esses números exprimem então a área dessas figuras. Cortando o quadrado em duas partes iguais, segundo a linha diagonal, aparecem dois triângulos iguais, cuja área, naturalmente, é a metade da área do quadrado.
Quando deparavam com uma superfície irregular da terra (nem quadrada, nem triangular), os primeiros cartógrafos e agrimensores apelavam para o artifício conhecido como triangulação: começando num ângulo qualquer, traçavam linhas a todos os demais ângulos visíveis do campo, e assim este ficava completamente dividido em porções triangulares, cujas áreas somadas davam a área total. Esse método - em uso até hoje - produzia pequenos erros, quando o terreno não era plano ou possuía bordos curvos.

 De fato, muitos terrenos seguem o contorno de um morro ou o curso de um rio. E construções há que requerem uma parede curva. Assim, um novo problema se apresenta: como determinar o comprimento de uma circunferência e a área de um círculo. Por circunferência entende-se a linha da periferia do círculo, sendo este uma superfície. Já os antigos geômetras observavam que, para demarcar círculos, grandes ou pequenos, era necessário usar uma corda, longa ou curta, e girá-la em torno de um ponto fixo, que era a estaca cravada no solo como centro da figura. O comprimento dessa corda - conhecido hoje como raio - tinha algo a ver com o comprimento da circunferência. Retirando a corda da estaca e colocando-a sobre a circunferência para ver quantas vezes cabia nela, puderam comprovar que cabia um pouco mais de seis vezes e um quarto. Qualquer que fosse o tamanho da corda, o resultado era o mesmo. Assim tiraram algumas conclusões:
a) o comprimento de uma circunferência é sempre cerca de 6,28 vezes maior que o de seu raio;
 b) para conhecer o comprimento de uma circunferência, basta averiguar o comprimento do raio e multiplicá-lo por 6,28.
E a área do círculo? A história da Geometria explica-a de modo simples e interessante. Cerca de 2000 anos a.C., um escriba egípcio chamado Ahmes matutava diante do desenho de um círculo no qual havia traçado o respectivo raio. Seu propósito era encontrar a área da figura.
Conta a tradição que Ahmes solucionou o problema facilmente: antes, pensou em determinar a área de um quadrado e calcular quantas vezes essa área caberia na área do círculo. Que quadrado escolher? Um qualquer? Parecia razoável tomar o que tivesse como lado o próprio raio da figura. Assim fez, e comprovou que o quadrado estava contido no círculo mais de 3 vezes e menos de 4, ou aproximadamente, três vezes e um sétimo (atualmente dizemos 3,14 vezes). Concluiu então que, para saber a área de um círculo, basta calcular a área de um quadrado construído sobre o raio e multiplicar a respectiva área por 3,14.
O número 3,14 é básico na Geometria e na Matemática. Os gregos tornaram-no um pouco menos inexato: 3,1416. Hoje, o símbolo p ("pi") representa esse número irracional, já determinado com uma aproximação de várias dezenas de casas decimais. Seu nome só tem uns duzentos anos e foi tirado da primeira sílaba da palavra peripheria, significando circunferência.

NOVAS FIGURAS

Por volta de 500 a.C., as primeiras universidades eram fundadas na Grécia. Tales e seu discípulo Pitágoras coligiram todo o conhecimento do Egito, da Etúrria, da Babilônia, e mesmo da Índia, para desenvolvê-los e aplicá-los à matemática, navegação e religião. A curiosidade crescia e os livros sobre Geometria eram muito procurados. Um compasso logo substituiu a corda e a estaca para traçar círculos, e o novo instrumento foi incorporado ao arsenal dos geômetras. O conhecimento do Universo aumentava com rapidez e a escola pitagórica chegou a afirmar que a Terra era esférica, e não plana. Surgiam novas construções geométricas, e suas áreas e perímetros eram agora fáceis de calcular.
Uma dessas figuras foi chamada polígono, do grego polygon, que significa "muitos ângulos". Atualmente até rotas de navios e aviões são traçadas por intermédio de avançados métodos de Geometria, incorporados ao equipamento de radar e outros aparelhos. O que não é de estranhar"desde os tempos da antiga Grécia, a Geometria sempre foi uma ciência aplicada, ou seja, empregada para resolver problemas práticos. Dos problemas que os gregos conseguiram solucionar, dois merecem referência: o cálculo da distância de um objeto a um observador e o cálculo da altura de uma construção.
No primeiro caso, para calcular, por exemplo, a distância de um barco até a costa, recorria-se a um curioso artifício. Dois observadores se postavam de maneira que um deles pudesse ver o barco sob um ângulo de 90º com relação à linha da costa e o outro sob um ângulo de 45º. Isto feito, a nave e os dois observadores ficavam exatamente nos vértices de um triângulo isósceles, porque os dois ângulos agudos mediam 45º cada um, e portanto os catetos eram iguais. Bastava medir a distância entre os dois observadores para conhecer a distância do barco até a costa.

O cálculo da altura de uma construção, de um monumento ou de uma árvore é também muito simples: crava-se verticalmente uma estaca na terra e espera-se o instante em que a extensão de sua sombra seja igual à sua altura. O triângulo formado pela estaca, sua sombra e a linha que une os extremos de ambos é isósceles. Basta medir a sombra para conhecer a altura.
3 - HISTÓRIA DA ÁLGEBRA
(uma visão geral)

Estranha e intrigante é a origem da palavra "álgebra". Ela não se sujeita a uma etimologia nítida como, por exemplo, a palavra "aritmética", que deriva do grego arithmos ("número"). Álgebra é uma variante latina da palavra árabe al-jabr (às vezes transliterada al-jebr), usada no título de um livro, Hisab al-jabr w'al-muqabalah, escrito em Bagdá por volta do ano 825 pelo matemático árabe Mohammed ibn-Musa al Khowarizmi (Maomé, filho de Moisés, de Khowarizm). Este trabalho de álgebra é com frequência citado, abreviadamente, como Al-jabr.
 Uma tradução literal do título completo do livro é a "ciência da restauração (ou reunião) e redução", mas matematicamente seria melhor "ciência da transposição e cancelamento"- ou, conforme Boher, "a transposição de termos subtraídos para o outro membro da equação" e "o cancelamento de termos semelhantes (iguais) em membros opostos da equação". Assim, dada a equação:

x2 + 5x + 4 = 4 - 2x + 5x3

al-jabr fornece
x2 + 7x + 4 = 4 + 5x3

e al-muqabalah fornece
x2 + 7x = 5x3

Talvez a melhor tradução fosse simplesmente "a ciência das equações".
Ainda que originalmente "álgebra" refira-se a equações, a palavra hoje tem um significado muito mais amplo, e uma definição satisfatória requer um enfoque em duas fases:
(1) Álgebra antiga (elementar) é o estudo das equações e métodos de resolvê-las.
(2) Álgebra moderna (abstrata) é o estudo das estruturas matemáticas tais como grupos, anéis e corpos - para mencionar apenas algumas.
De fato, é conveniente traçar o desenvolvimento da álgebra em termos dessas duas fases, uma vez que a divisão é tanto cronológica como conceitual.

 EQUAÇÕES ALGÉBRICAS E NOTAÇÃO

 A fase antiga (elementar), que abrange o período de 1700 a.C. a 1700 d.C., aproximadamente, caracterizou-se pela invenção gradual do simbolismo e pela resolução de equações (em geral coeficientes numéricos) por vários métodos, apresentando progressos pouco importantes até a resolução "geral" das equações cúbicas e quárticas e o inspirado tratamento das equações polinomiais em geral feito por François Viète, também conhecido por Vieta (1540-1603).
O desenvolvimento da notação algébrica evoluiu ao longo de três estágios: o retórico (ou verbal), o sincopado (no qual eram usadas abreviações de palavras) e o simbólico. No último estágio, a notação passou por várias modificações e mudanças, até tornar-se razoavelmente estável ao tempo de Isaac Newton. É interessante notar que, mesmo hoje, não há total uniformidade no uso de símbolos. Por exemplo, os americanos escrevem "3.1416" como aproximação de Pi, e muitos europeus escrevem "3,1416". Em alguns países europeus, o símbolo "÷" significa "menos". Como a álgebra provavelmente se originou na Babilônia, parece apropriado ilustrar o estilo retórico com um exemplo daquela região. O problema seguinte mostra o relativo grau de sofisticação da álgebra babilônica. É um exemplo típico de problemas encontrados em escrita cuneiforme, em tábuas de argila que remontam ao tempo do rei Hammurabi. A explanação, naturalmente, é feita em português; e usa-se a notação decimal indo-arábica em vez da notação sexagesimal cuneiforme. A coluna à direita fornece as passagens correspondentes em notação moderna. Eis o exemplo:
 [1] Comprimento, largura. Multipliquei comprimento por largura, obtendo assim a área: 252. Somei comprimento e largura: 32. Pede-se: comprimento e largura.
 [2] [Dado] 32 soma; 252 área.
x+y=k
xy=P     } ... (A)
[3] [Resposta] 18 comprimento; 14 largura.

[4] Segue-se este método: Tome metade de 32 [que é 16].
k/2
16 x 16 = 256
(k/2)2
256 - 252 = 4
(k/2)2 - P = t2    } ... (B)
A raiz quadrada de 4 é 2.
Descrição: raiz.jpg (2149 bytes)
16 + 2 = 18 comprimento.
(k/2) + t = x.
16 - 2 = 14 largura
(k/2) - t = y.
[5] [Prova] Multipliquei 18 comprimento por 14 largura.
18 x 14 = 252 área
((k/2)+t) ((k/2)-t)
= (k2/4) - t2 = P = xy.

Nota-se que na etapa [1] o problema é formulado, na [2] os dados são apresentados, na [3] a resposta é dada, na [4] o método de solução é explicado com números e, finalmente, na [5] a resposta é testada. A "receita" acima é usada repetidamente em problemas semelhantes. Ela tem significado histórico e interesse atual por várias razões.Antes de tudo não é a maneira como resolveríamos hoje o sistema (A). O procedimento padrão nos atuais textos escolares de álgebra é resolver, digamos, a primeira equação para y (em termos de x), substituir na segunda equação e, então, resolver a equação quadrática resultante em x; isto é, usaríamos o método de substituição. Os babilônios também sabiam resolver sistemas por substituição, mas frequentemente preferiam usar seu método paramétrico. Ou seja, usando-se notação moderna, eles concebiam x e y em termos de uma nova incógnita (ou parâmetro) t fazendo x=(k/2)+t e y=(k/2)-t.
  Então o produto
xy =  ((k/2) + t) ((k/2) - t)  =  (k/2)2 - t2   =  P
levava-os à relação (B):
(k/2)2 - P =  t2
 Em segundo lugar, o problema acima tem significado histórico porque a álgebra grega (geométrica) dos pitagóricos e de Euclides seguia o mesmo método de solução - traduzida, entretanto, em termos de segmentos de retas e áreas e ilustrada por figuras geométricas. Alguns séculos depois, outro grego, Diofanto, também usou a abordagem paramétrica em seu trabalho com equações "diofantinas". Ele deu início ao simbolismo moderno introduzindo abreviações de palavras e evitando o estilo um tanto intrincado da álgebra geométrica.
Em terceiro lugar, os matemáticos árabes (inclusive al-Khowarizmi) não usavam o método empregado no problema acima; preferiam eliminar uma das incógnitas por substituição e expressar tudo em termos de palavras e números.
Antes de deixar a álgebra babilônica, notemos que eles eram capazes de resolver uma variedade surpreendente de equações, inclusive certos tipos especiais de cúbicas e quárticas - todas com coeficientes numéricos, naturalmente.

ÁLGEBRA NO EGITO

 A álgebra surgiu no Egito quase ao mesmo tempo que na Babilônia; mas faltavam à álgebra egípcia os métodos sofisticados da álgebra babilônica, bem como a variedade de equações resolvidas, a julgar pelo Papiro Moscou e o Papiro Rhind - documentos egípcios que datam de cerca de 1850 a.C. e 1650 a.C., respectivamente, mas refletem métodos matemáticos de um período anterior.
Para equações lineares, os egípcios usavam um método de resolução consistindo em uma estimativa inicial seguida de uma correção final - um método ao qual os europeus posteriormente deram o nome umtanto abstruso de "regra da falsa posição". A álgebra do Egito, como a da Babilônia, era retórica.
O sistema de numeração egípcio, relativamente primitivo em comparação com o dos babilônios, ajuda a explicar a falta de sofisticação da álgebra egípcia. Os matemáticos europeus do século XVI tiveram de estender a noção indo-arábica de número antes de poderem avançar significativamente além dos resultados babilônios de resolução de equações.

ÁLGEBRA GEOMÉTRICA GREGA

 A álgebra grega conforme foi formulada pelos pitagóricos e por Euclides era geométrica. Por exemplo, o que nós escrevemos como:
(a+b)2 = a2 + 2ab + b2
era concebido pelos gregos em termos do diagrama apresentado na Figura 1 e era curiosamente enunciado por Euclides em Elementos, livro II, proposição 4:
Se uma linha reta é dividida em duas partes quaisquer, o quadrado sobre a linha toda é igual aos quadrados sobre as duas partes, junto com duas vezes o retângulo que as partes contém. [Isto é, (a+b)2 = a2 + 2ab + b2.]
Somos tentados a dizer que, para os gregos da época de Euclides, a2 era realmente um quadrado.
Não há dúvida de que os pitagóricos conheciam bem a álgebra babilônica e, de fato, seguiam os métodos-padrão babilônios de resolução de equações. Euclides deixou registrados esses resultados pitagóricos. Para ilustrá-lo, escolhemos o teorema correspondente ao problema babilônio considerado acima.
  
Do livro VI dos Elementos, temos a proposição 28 (uma versão simplificada):
Dada uma linha reta AB [isto é, x+y=k], construir ao longo dessa linha um retângulo com uma dada área [xy = P], admitindo que o retângulo "fique aquém" em AB por uma quantidade "preenchida" por outro retângulo [o quadrado BF na Figura 2], semelhante a um dado retângulo [que aqui nós admitimos ser qualquer quadrado].

 Na solução desta construção solicitada (Fig.2) o trabalho de Euclides é quase exatamente paralelo à solução babilônica do problema equivalente. Conforme indicado por T.L.Heath / EUCLID: II, 263/, os passos são os seguintes:
 Bissecte AB em M:
k/2
Construa o quadrado MBCD:
(k/2)2
Usando VI, 25, construa o quadrado DEFG com área igual ao excesso de MBCD sobre a área dada P:
t2 = (k/2)2 - P
Então é claro que
y = (k/2) - t
 Como fazia frequentemente, Euclides deixou o outro caso para o estudante - neste caso, x=(k/2)+t, o que Euclides certamente percebeu mas não formulou.
É de fato notável que a maior parte dos problemas-padrão babilônicos tenham sido "refeitos" desse modo por Euclides. Mas por quê? O que levou os gregos a darem à sua álgebra esta formulação desajeitada? A resposta é básica: eles tinham dificuldades conceituais com frações e números irracionais.
 Mesmo que os matemáticos gregos fossem capazes de contornar as frações, tratando-as como razões de inteiros, eles tinham dificuldades insuperáveis com números como a raiz quadrada de 2, por exemplo. Lembramos o "escândalo lógico" dos pitagóricos quando descobriram que a diagonal de um quadrado unitário é incomensurável com o lado (ou seja, diag/lado é diferente da razão de dois inteiros).
Assim, foi seu estrito rigor matemático que os forçou a usar um conjunto de segmentos de reta como domínio conveniente de elementos.
 Pois, ainda que raiz quadrada de 2 não possa ser expresso em termos de inteiros ou suas razões, pode ser representado como um segmento de reta que é precisamente a diagonal do quadrado unitário. Talvez não seja apenas um gracejo dizer que o contínuo linear era literalmente linear.
 De passagem devemos mencionar Apolônio (c. 225 a.C.), que aplicou métodos geométricos ao estudo das secções cônicas. De fato, seu grande tratado Secções cônicas contém mais geometria analítica das cônicas - toda fraseada em terminologia geométrica - do que os cursos universitários de hoje.
A matemática grega deu uma parada brusca. A ocupação romana tinha começado, e não encorajava a erudição matemática, ainda que estimulasse alguns outros ramos da cultura grega. Devido ao estilo pesado da álgebra geométrica, esta não poderia sobreviver somente na tradição escrita; necessitava de um meio de comunicação vivo, oral. Era possível seguir o fluxo de idéias desde que um instrutor apontasse para diagramas e explicasse; mas as escolas de instrução direta não sobreviveram.

ÁLGEBRA NA EUROPA

A álgebra que entrou na Europa (via Liber abaci de Fibonacci e traduções) havia regredido tanto em estilo como em conteúdo. O semi-simbolismo (sincopação) de Diofanto e Brahmagupta e suas realizações relativamente avançadas não estavam destinados a contribuir para uma eventual irrupção da álgebra.
A renascença e o rápido florescimento da álgebra na Europa foram devidos aos seguintes fatores:
1.      facilidade de manipular trabalhos numéricos através do sistema de numeração indo-arábico, muito superior aos sistemas (tais como o romano) que requeriam o uso do ábaco;
2.      invenção da imprensa com tipos móveis, que acelerou a padronização do simbolismo mediante a melhoria das comunicações, baseada em ampla distribuição;
3.      ressurgimento da economia, sustentando a atividade intelectual; e a retomada do comércio e viagens, facilitando o intercâmbio de idéias tanto quanto de bens.
Cidades comercialmente fortes surgiram primeiro na Itália, e foi lá que o renascimento algébrico na Europa efetivamente teve início.
4 - A HISTÓRIA DA MATEMÁTICA COMERCIAL E FINANCEIRA
I-) Introdução 
 É bastante antigo o conceito de juros, tendo sido amplamente divulgado e utilizado ao longo da História. Esse conceito surgiu naturalmente quando o Homem percebeu existir uma estreita relação entre o dinheiro e o tempo. Processos de acumulação de capital e a desvalorização da moeda levariam normalmente a idéia de juros, pois se realizavam basicamente devido ao valor temporal do dinheiro. 
As tábuas mais antigas mostram um alto grau de habilidade computacional e deixam claro que o sistema sexagesimal posicional já estava de longa data estabelecida. Há muitos textos desses primeiros tempos que tratam da distribuição de produtos agrícolas e de cálculos aritméticos baseados nessas transações. As tábuas mostram que os sumérios antigos estavam familiarizados com todos os tipos de contratos legais e usuais, como faturas, recibos, notas promissórias, crédito, juros simples e compostos, hipotecas, escrituras de venda e endossos. 
Há tábuas que são documentos de empresas comerciais e outras que lidam com sistemas de pesos e medidas. Muitos processos aritméticos eram efetuados com a ajuda de várias tábuas.Das 400 tábuas matemáticas cerca de metade eram tábuas matemáticas. Estas últimas envolvem tábuas de multiplicação, tábuas de inversos multiplicativos, tábuas de quadrados e cubos e mesmo tábuas de exponenciais. Quanto a estas, provavelmente eram usadas, juntamente com a interpelação, em problemas de juros compostos. As tábuas de inversos eram usadas para reduzir a divisão à multiplicação. 
 II-) Os Juros e os Impostos 
Os juros e os impostos existem desde a época dos primeiros registros de civilizações existentes na Terra. Um dos primeiros indícios apareceu na já na Babilônia no ano de 2000 aC. Nas citações mais antigas, os juros eram pagos pelo uso de sementes ou de outras conveniências emprestadas; os juros eram pagos sob a forma de sementes ou de outros bens. Muitas das práticas existentes originaram-se dos antigos costumes de empréstimo e devolução de sementes e de outros produtos agrícolas. 
A História também revela que a idéia se tinha tornado tão bem estabelecida que já existia uma firma de banqueiros internacionais em 575 aC, com os escritórios centrais na Babilônia. Sua renda era proveniente das altas taxas de juros cobradas pelo uso de seu dinheiro para o financiamento do comércio internacional. O juro não é apenas uma das nossas mais antigas aplicações da Matemática Financeira e Economia, mas também seus usos sofreram poucas mudanças através dos tempos. 
Como em todas as instruções que tem existido por milhares de anos, algumas das práticas relativas a juros tem sido modificadas para satisfazerem às exigências atuais, mas alguns dos antigos costumes ainda persistem de tal modo que o seu uso nos dias atuais ainda envolve alguns procedimentos incômodos.
Entretanto, devemos lembrar que todas as antigas práticas que ainda persistem foram inteiramente lógicas no tempo de sua origem. Por exemplo, quando as sementes eram emprestadas para a semeadura de uma certa área, era lógico esperar o pagamento na próxima colheita - no prazo de um ano. Assim, o cálculo de juros numa base anual era mais razoável; tão quanto o estabelecimento de juros compostos para o financiamento das antigas viagens comerciais, que não poderiam ser concluídas em um ano.Conforme a necessidade de cada época, foi se criando novas formas de se trabalhar com a relação tempo-juros (juros semestral, bimestral, diário, etc). 
Há tábuas nas coleções de Berlirn, de Yale e do Louvre que contêm problemas sobre juros compostos e há algumas tábuas em Istambul que parecem ter sido original- mente tábuas de a' para n de 1 a 10 e para a = 9, 16, 100 e 225. Com essas tábuas podem-se resolver equações exponenciais do tipo a' = b. Em uma tábua do Louvre, de cerca de 1700 a.C., há o seguinte problema: Por quanto tempo deve-se aplicar uma certa soma de dinheiro a juros compostos anuais de 20% para que ela dobre?.
III-) O Valor e a Moeda 
Na época em que os homens viviam em comunidades restritas, tirando da natureza todos os produtos de que tinham necessidade, sem dúvida devia existir muito pouca comunicação entre as diversas sociedades. Mas com o desenvolvimento do artesanato e da cultura e em razão da desigual repartição dos diversos produtos naturais, a troca comercial mostrou-se pouco a pouco necessária. 
O primeiro tipo de troca comercial foi o escambo, fórmula segundo a qual se trocam diretamente (e, portanto sem a intervenção de uma "moeda" no sentido moderno da palavra) gêneros e mercadorias correspondentes a matérias primas ou a objetos de grande necessidade. 
Por vezes, quando se tratava de grupos que entretinham relações pouco amistosas, essas trocas eram feitas sob a forma de um escambo silencioso. Uma das duas partes depositava, num lugar previamente estabelecido, as diversas mercadorias com as quais desejava fazer a troca e, no dia seguinte, encontrava em seu lugar (ou ao lado delas) os produtos propostos pelo outro parceiro. Se a troca fosse considerada conveniente levavam-se os produtos, senão retornava-se no dia seguinte para encontrar uma quantidade maior. O mercado podia então durar vários dias ou mesmo terminar sem troca quando as duas partes não podiam encontrar terreno para entendimento. 
Cenas como tais puderam ser observadas por exemplo entre os aranda da Austrália, os vedda do Ceilão, os bosquímanos e os pigmeus da África, os botocudos do Brasil, bem como na Sibéria e na Polinésia.
Com a intensificação das comunicações entre os diversos grupos e a importância cada vez maior das transações, a prática do escambo direto tornou-se bem rapidamente um estorvo. Não se podiam mais trocar mercadorias segundo o capricho de tal ou qual indivíduo ou em virtude de um uso consagrado ao preço de intermináveis discussões. 
Houve portanto a necessidade de um sistema relativamente estável de avaliações e de equivalências, fundado num princípio (vizinho daquele da base de um sistema de numeração) dando a definição de algumas unidades ou padrões fixos. Nesse sistema é sempre possível estimar tal ou qual valor, não somente para as operações de caráter econômico mas também (e talvez sobretudo) para a regulamentação de problemas jurídicos importantes e, todas as espécies de produtos, matérias ou objetos utilitários serviram nessa ocasião. 
A primeira unidade de escambo admitida na Grécia pré-helênica foi o boi. Não é por acaso que a palavra latina pecúnia quer dizer "fortuna, moeda, dinheiro": provém, com efeito, de pecus, que significa "gado, rebanho"; além disso, o sentido próprio da palavra pecunia corresponde ao "ter em bois".
Mas nos tempos antigos a operação de escambo, longe de ser um ato simples, devia ser, ao contrário, envolta de formalidades complexas, muito provavelmente ligadas à mística e às práticas mágicas. É em todo caso o que revela a análise etnológica feita nas sociedades "primitivas" contemporâneas, que se viu confirmar por um certo número de descobertas arqueológicas. Pode-se, portanto, supor que nas culturas pastorais a idéia de boi-padrão (moeda de sangue) sucedeu à idéia de "boi de sacrifício", ela mesma ligada ao valor intrínseco estimado do animal. 
Em contrapartida, nas ilhas do Pacífico as mercadorias foram estimadas em colares de pérolas ou de conchas. Após um certo período, começou-se por trocar faixas de tecido por animais ou objetos. O tecido era a moeda; a unidade era o palmo da fita de duas vezes oitenta fios de largura.
Tais métodos apresentavam, contudo, sérias dificuldades de aplicação. Assim, à medida que o comércio se desenvolvia, os metais desempenharam um papel cada vez maior nas transações comerciais, vindo a tornar-se no fim das contas a "moeda de troca" preferida dos vendedores e compradores. E as avaliações das diversas mercadorias passaram a ser feitas quantitativamente pelo peso, cada uma delas referindo a uma espécie de peso-padrão relativo a um ou a outro metal. 
Igualmente no Egito faraônico, os gêneros e as mercadorias foram freqüentemente estimados e pagos em metal (cobre, bronze e, por vezes, ouro ou prata), que se dividia inicialmente em pepitas e palhetas. A avaliação era feita também sob a forma de lingotes ou de anéis, cujo valor se determinava em seguida pela pesagem. 
Até o momento não somente tratamos de um simples escambo, mas também um verdadeiro sistema econômico. A partir de então, graças ao padrão de metal, as mercadorias passaram a não mais ser trocadas ao simples prazer dos contratantes ou segundo usos consagrados freqüentemente arbitrários, mas em função de seu "justo preço". 
Até então, tratava-se somente de introduzir nas transações e nos atos jurídicos uma espécie de peso-padrão, unidade de valor à qual o preço de cada uma das mercadorias ou ações consideradas era referido. Partindo desse princípio, tal metal ou tal outro podia então servir em toda ocasião como "salário", "multa" ou como "valor de troca", e no caso da "multa", algum tipo de cálculo de juros primário era utilizado para se obter um certo valor para a mesma. 
Aprendendo a contar abstratamente e agrupar todas as espécies de elementos seguindo o princípio da base, o homem aprendeu assim a estimar, avaliar e medir diversas grandezas (pesos, comprimentos, áreas, volumes, capacidades etc.). Aprende igualmente a atingir e conceber números cada vez maiores, antes mesmo de ser capaz de dominar a idéia do infinito. 
Pôde elaborar também várias técnicas operatórias (mentais, concretas e, mais tarde, escritas) e erguer os primeiros rudimentos de urna aritmética inicialmente prática, antes de tornar-se abstrata e conduzir à álgebra - onde hoje temos a Matemática Financeira amplamente desenvolvida. 
Foi-lhe também aberta a via para a elaboração de um calendário e de uma astronomia, bem como para o desenvolvimento de uma geometria estruturada inicialmente em medidas de comprimento, áreas e volumes, antes de ser especulativa e axiomática. Numa palavra, a aquisição desses dados fundamentais permitiu pouco a pouco à humanidade tentar medir o mundo, compreendê-lo um pouco melhor, colocar a seu serviço alguns de seus inúmeros segredos e organizar, para desenvolvê-la, sua economia.
5 - ORIGEM DOS SINAIS
    Adição ( + ) e subtração ( - )

    O emprego regular do sinal + ( mais ) aparece na Aritmética Comercial de João Widman d'Eger publicada em Leipzig em 1489.
Entretanto, representavam não à adição ou à subtração ou aos números positivos ou negativos, mas aos excessos e aos déficit em problemas de negócio. Os símbolos positivos e negativos vieram somente ter uso geral na Inglaterra depois que foram usados por Robert Recorde em 1557.Os símbolos positivos e negativos foram usados antes de aparecerem na escrita. Por exemplo: foram pintados em tambores para indicar se os tambores estavam cheios ou não.
    Os antigos matemáticos gregos, como se observa na obra de Diofanto, limitavam-se a indicar a adição juntapondo as parcelas - sistema que ainda hoje adotamos quando queremos indicar a soma de um número inteiro com uma fração. Como sinal de operação mais usavam os algebristas italianos a letra P, inicial da palavra latina plus.
     Multiplicação ( . ) e divisão ( : )
    O sinal de X, como que indicamos a multiplicação, é relativamente moderno. O matemático inglês Guilherme Oughtred empregou-o pela primeira vez, no livro Clavis Matematicae publicado em 1631. Ainda nesse mesmo ano, Harriot, para indicar também o produto a efetuar, colocava um ponto entre os fatores. Em 1637, Descartes já se limitava a escrever os fatores justapostos, indicando, desse modo abreviado, um produto qualquer. Na obra de Leibniz escontra-se o sinal Descrição: http://www.somatematica.com.br/figuras/sinal1.gifpara indicar multiplicação: esse mesmo símbolo colocado de modo inverso indicava a divisão.

    O ponto foi introduzido como um símbolo para a multiplicação por G. W. Leibniz. Julho em 29, 1698, escreveu em uma carta a John Bernoulli: "eu não gosto de X como um símbolo para a multiplicação, porque é confundida facilmente com x; freqüentemente eu relaciono o produto entre duas quantidades por um ponto . Daí, ao designar a relação uso não um ponto mas dois pontos, que eu uso também para a divisão."
As formas a/b e Descrição: http://www.somatematica.com.br/figuras/sinal3.gif, indicando a divisão de a por b, são atribuídas aos árabes: Oughtred, e, 1631, colocava um ponto entre o dividendo o divisor. A razão entre duas quantidades é indicada pelo sinal :, que apareceu em 1657 numa obra de Oughtred. O sinal ÷, segundo Rouse Ball, resultou de uma combinação de dois sinais existentes - e :
     Sinais de relação ( =, < e > )
    Robert Recorde, matemático inglês, terá sempre o seu nome apontado na história da Matemática por ter sido o primeiro a empregar o sinal = ( igual ) para indicar igualdade. No seu primeiro livro, publicado em 1540, Record colocava o símbolo Descrição: http://www.somatematica.com.br/figuras/sinal2.gifentre duas expressões iguais; o sinal = ; constituído por dois pequenos traços paralelos, só apareceu em 1557. Comentam alguns autores que nos manuscritos da Idade Média o sinal = aparece como uma abreviatura da palavra est.

    Guilherme Xulander, matemático alemão, indicava a igualdade , em fins do século XVI, por dois pequenos traços paralelos verticais; até então a palavra aequalis aparecia, por extenso, ligando os dois membros da igualdade.
    Os sinais > ( maior que ) e < ( menor que ) são devidos a Thomaz Harriot, que muito contribuiu com seus trabalhos para o desenvolvimento da análise algébrica.
6 - ORIGEM DOS NÚMEROS IRRACIONAIS
     A origem histórica da necessidade de criação dos números irracionais está intimamente ligada com fatos de natureza geométrica e de natureza aritemética. Os de natureza geométrica podem ser ilustrados com o problema da medida da diagonal do quadrado quando a comparamos com o seu lado.

    Este problema geométrico arrasta outro de natureza aritemética, que consiste na impossibilidade de encontrar números conhecidos - racionais - para raízes quadradas de outros números, como por exemplo, raiz quadrada de 2. Estes problemas já eram conhecidos da Escola Pitagórica (séc. V a.c.), que considerava os irracionais heréticos.
 A Ciência grega consegui um aprofundamento de toda a teoria dos números racionais, por via geométrica - "Elementos de Euclides" - mas não avançou, por razões essencialmente filosóficas, no campo do conceito de número. Para os gregos, toda a figura geométrica era formada por um número finito de pontos, sendo estes concebidos como minúsculos corpúsculos - "as mónadas" - todos iguais entre si; daí resultava que, ao medir um comprimento de n mónadas com outro de m, essa medida seria sempre representada por uma razão entre dois inteiros n/m (número racional); tal comprimento incluía-se, então na categoria dos comensuráveis.
 Ao encontrar os irracionais, aos quais não conseguem dar forma de fracção, os matemáticos gregos são levados a conceber grandezas incomensuráveis. A reta onde se marcavam todos os racionais era, para eles, perfeitamente contínua; admitir os irracionais era imaginála cheia de "buracos".
É no séc. XVII, com a criação da Geometria Analítica (Fermat e Descartes), que se estabelece a simbiose do geométrico com o algébrico, favorecendo o tratamento aritemético do comensurável e do incomensurável. Newton (1642-1727) define pela primeira vez "número", tanto racional como irracional.
 
    O IRRACIONAL ø
    ø =1,6180339887... ou ø =(1 + sqr(5))/2 é considerado símbolo de harmonia. Os artistas gregos usavam-no em arquitetura; Leonardo da Vinci, nos seus trabalhos artísticos; e, no mundo moderno, o arquiteto Le Corbusier, com base nele, apresentou, em 1948, O modulor. O número de ouro descobre-se em relações métricas:

- na natureza: em animais (como na concha do Nautilus) flores, frutos, na disposição dos ramos de certas árvores;
- em figuras geométricas, tais como o retângulo de ouro, hexágono e decágono regulares e poliedros regulares;
- em inúmeros monumentos, desde a Pirâmide de Quéops até diversas catedrais, na escultura, pintura e até na música.
7 -  ORIGEM DOS NÚMEROS NEGATIVOS
    O número é um conceito fundamental em Matemática que tomou forma num longo desenvolvimento histórico. A origem e formulação deste conceito ocorreu simultaneamente com o despontar, entenda-se nascimento, e desenvolvimento da Matemática.
As atividades práticas do homem, por um lado, e as exigências internas da Matemática por outro determinaram o desenvolvimento do conceito de número. A necessidade de contar objetos levou ao aparecimento do conceito de número Natural. 
    Todas as nações que desenvolveram formas de escrita introduziram o conceito de número Natural e desenvolveram um sistema de contagem. O desenvolvimento subsequente do conceito de número prosseguiu principalmente devido ao próprio desenvolvimento da Matemática.
Os números negativos aparecem pela primeira vez na China antiga. Os chineses estavam acostumados a calcular com duas coleções de barras - vermelha para os números positivos e preta para os números negativos.No entanto, não aceitavam a ideia de um número negativo poder ser solução de uma equação. Os Matemáticos indianos descobriram os números negativos quando tentavam formular um algoritmo para a resolução de equações quadráticas.
São exemplo disso as contribuições de Brahomagupta, pois a aritmética sistematizada dos números negativos encontra-se pela primeira vez na sua obra. As regras sobre grandezas eram já conhecidas através dos teoremas gregos sobre subtracção, como por exemplo (a -b)(c -d) = ac +bd -ad -bc, mas os hindus converteram-nas em regras numéricas sobre números negativos e positivos. 
    Diofanto (Séc. III) operou facilmente com os números negativos. Eles apareciam constantemente em cálculos intermédios em muitos problemas do seu "Aritmetika", no entanto havia certos problemas para o qual as soluções eram valores inteiros negativos como por exemplo:
4 = 4x +20
3x -18 = 5x^2
    Nestas situações Diofanto limitava-se a classificar o problema de absurdo. Nos séculos XVI e XVII, muitos matemáticos europeus não apreciavam os números negativos e, se esses números apareciam nos seus cálculos, eles consideravam-nos falsos ou impossíveis. Exemplo deste facto seria Michael Stifel (1487- 1567) que se recusou a admitir números negativos como raízes de uma equação, chamando-lhes de "numeri absurdi". Cardano usou os números negativos embora chamando-os de "numeri ficti". A situação mudou a partir do (Séc.XVIII) quando foi descoberta uma interpretação geométrica dos números positivos e negativos como sendo segmentos de direções opostas.
 Demonstração da regra dos sinais (segundo Euler)
    Euler, um virtuoso do cálculo como se constata nos seus artigos científicos pela maneira audaz como manejava os números relativos e sem levantar questões quanto à legitimidade das suas construções forneceu uma explicação ou justificação para a regra os sinais. Consideremos os seus argumentos: 
    1- A multiplicação de uma dívida por um número positivo não oferece dificuldade, pois 3 dívidas de a escudos é uma dívida de 3a escudos, logo (b).(-a) = -ab. 
    2- Por comutatividade, Euler deduziu que (-a).(b) = -ab
Destes dois argumentos conclui que o produto de uma quantidade positiva por uma quantidade negativa e vice-versa é uma quantidade negativa. 
    3- Resta determinar qual o produto de (-a) por (-b). É evidente diz Euler que o valor absoluto é ab. É pois então necessário decidir-se entre ab ou -ab. Mas como (-a) ´ b é -ab, só resta como única possibilidade que (-a).(-b) = +ab.
 É claro que este tipo de argumentação vem demonstrar que qualquer "espírito" mais zeloso, como Stendhal, não pode ficar satisfeito, pois principalmente o terceiro argumento de Euler não consegue provar ou mesmo justificar coerentemente que - por - = +. No fundo, este tipo de argumentação denota que Euler não tinha ainda conhecimentos suficientes para justificar estes resultados aceitalvelmente.
Na mesma obra de Euler podemos verificar que ele entende os números negativos como sendo apenas uma quantidade que se pode representar por uma letra precedida do sinal - (menos). Euler não compreende ainda que os números negativos são quantidades menores que zero. 
8 - ORIGEM DAS PROBABILIDADES 
O passo decisivo para fundamentação teórica da inferência estatística, associa-se ao desenvolvimento do cálculo das probabilidades. A origem deste costuma atribuir-se a questões postas a Pascal (1623-1662) pelo célebre cavaleiro Méré, para alguns autores um jogador inveterado, para outros um filósofo e homem de letras.
 Parece, no entanto, mais verosímil aceitar que as questões postas por Méré (1607-1684) eram de natureza teórica e não fruto da prática de jogos de azar. Parece, também, aceitável que não foram essas questões que deram origem ao cálculo das probabilidades. Do que não resta dúvida é de que a correspondência trocada entre Pascal e Fermat (1601-1665) - em que ambos chegam a uma solução correta do célebre problema da divisão das apostas - representou um significativo passo em frente no domínio das probabilidades. 
   Também há autores que sustentam que o cálculo das probabilidades teve a sua origem na Itália com Paccioli (1445-1514), Cardano (1501-1576), Tartaglia (1499-1557), Galileo (1564-1642) e outros. Se é certo que nomeadamente Cardano no seu livro Liber de Ludo Aleae, não andou longe de obter as probabilidades de alguns acontecimentos, a melhor forma de caracterizar o grupo é dizer que marca o fim da pré- história da teoria das probabilidades.
Três anos depois de Pascal ter previsto que aliança do rigor geométrico com a incerteza do azar daria origem a uma nova ciência, Huyghens (1629-1645), entusiasmado pelo desejo de " dar regras a coisas que parecem escapar á razão humana" publicou "De Ratiociniis in Ludo Aleae" que é
considerado como sendo o primeiro livro sobre cálculo das probabilidades e tem a particularidade notável de introduzir o conceito de esperança matemática. 
  Leibniz (1646-1716), como pensador ecléctico que era, não deixou de se ocupar das probabilidades. Publicou, com efeito, duas obras, uma sobre a " arte combinatória" e outra sobre as aplicações do cálculo das probabilidades às questões financeiras.
Foi ainda devido ao conselho de Leibniz que Jacques Bernoulli se dedicou ao aperfeiçoamento da teoria das probabilidades. A sua obra "Ars Conjectandi", foi publicada oito anos depois da sua morte e nela o primeiro teorema limite da teoria das probabilidades é rigorosamente provado. Pode dizer-se que foi devido às contribuições de Bernoulli que o cálculo das probabilidades adquiriu o estatuto de ciência. São fundamentais para o desenvolvimento do cálculo das probabilidades as contribuições dos astrónomos, Laplace, Gauss e Quetelet.
9 - ORIGEM DO ZERO
Embora a grande invenção prática do zero seja atribuída aos hindus, desenvolvimentos parciais ou limitados do conceito de zero são evidentes em vários outros sistemas de numeração pelo menos tão antigos quanto o sistema hindu, se não mais. Porém o efeito real de qualquer um desses passos mais antigos sobre o desenvolvimento pleno do conceito de zero - se é que de fato tiveram algum efeito - não está claro.
O sistema sexagesimal babilônico usado nos textos matemáticos e astronômicos era essencialmente um sistema posicional, ainda que o conceito de zero não estivesse plenamente desenvolvido. Muitas das tábuas babilônicas indicam apenas um espaço entre grupos de símbolos quando uma potência particular de 60 não era necessária, de maneira que as potências exatas de 60 envolvidas devem ser determinadas, em parte, pelo contexto. Nas tábuas babilônicas mais tardias (aquelas dos últimos três séculos a.C.)  usava-se um símbolo para indicar uma potência ausente, mas isto só ocorria no interior de um grupo numérico e não no final.
 Quando os gregos prosseguiram o desenvolvimento de tabelas astronômicas, escolheram explicitamente o sistema sexagesimal babilônico para expressar suas frações, e não o sistema egípcio de frações unitárias. A subdivisão repetida de uma parte em 60 partes menores precisava que às vezes “nem uma parte” de uma unidade fosse envolvida, de modo que as tabelas de Ptolomeu no Almagesto (c.150 d.C.) incluem o símbolo Descrição: http://www.somatematica.com.br/historia/zero.gif ou 0 para indicar isto.
Bem mais tarde, aproximadamente no ano 500, textos gregos usavam o ômicron, que é a primeira letra palavra grega oudem (“nada”). Anteriormente, o ômicron, restringia a representar o número 70, seu valor no arranjo alfabético regular.
Talvez o uso sistemático mais antigo de um símbolo para zero num sistema de valor relativo se encontre na matemática dos maias das Américas Central e do Sul. O símbolo maia do zero era usado para indicar a ausência de quaisquer unidades das várias ordens do sistema de base vinte modificado. Esse sistema era muito mais usado, provavelmente, para registrar o tempo em calendários do que para propósitos computacionais. 
É possível que o mais antigo símbolo hindu para zero tenha sido o ponto negrito, que aparece no manuscrito Bakhshali, cujo conteúdo talvez remonte do século III ou IV d.C., embora alguns historiadores o localize até no século XII. Qualquer associação do pequeno círculo dos hindus, mais comuns, com o símbolo usado pelos gregos seria apenas uma conjectura.  
Como a mais antiga forma do símbolo hindu era comumente usado em inscrições e manuscritos para assinalar um espaço em branco, era chamado sunya, significando “lacuna” ou “vazio”. Essa palavra entrou para o árabe como sifr, que significa “vago”.
Ela foi transliterada para o latim como zephirum ou zephyrum  por volta do ano 1200, mantendo-se seu  som mas não seu sentido. Mudanças sucessivas dessas formas, passando inclusive por zeuero, zepiro e cifre,  levaram as nossas palavras “cifra” e “zero”. O significado duplo da palavra “cifra” hoje - tanto pode se referir ao símbolo do zero como a qualquer dígito - não ocorria no original hindu.     
10 - ORIGEM DO CONCEITO DE
DERIVADA DE UMA FUNÇÃO
 O conceito de função que hoje pode parecer simples, é o resultado de uma lenta e longa evolução histórica iniciada na Antiguidade quando, por exemplo, os matemáticos Babilónios utilizaram tabelas de quadrados e de raízes quadradas e cúbicas ou quando os Pitagóricos tentaram relacionar a altura do som emitido por cordas submetidas à mesma tensão com o seu comprimento.
 Nesta época o conceito de função não estava claramente definido: as relações entre as variáveis surgiam de forma implícita e eram descritas verbalmente ou por um gráfico. 
Só no séc. XVII, quando Descartes e Pierre Fermat introduziram as coordenadas cartesianas, se tornou possível transformar problemas geométricos em problemas algébricos e estudar analiticamente funções.
A Matemática recebe assim um grande impulso, nomeadamente na sua aplicabilidade a outras ciências - os cientistas passam, a partir de observações ou experiências realizadas, a procurar determinar a fórmula ou função que relaciona as variáveis em estudo. A partir daqui todo o estudo se desenvolve em torno das propriedades de tais funções.
Por outro lado, a introdução de coordenadas, além de facilitar o estudo de curvas já conhecidas permitiu a "criação" de novas curvas, imagens geométricas de funções definidas por relacões entre variáveis. 
Foi enquanto se dedicava ao estudo de algumas destas funções que Fermat deu conta das limitações do conceito clássico de reta tangente a uma curva como sendo aquela que encontrava a curva num único ponto. Tornou-se assim importante reformular tal conceito e encontrar um processo de traçar uma tangente a um gráfico num dado ponto - esta dificuldade ficou conhecida na História da Matemática como o " Problema da Tangente".
 Fermat resolveu esta dificuldade de uma maneira muito simples: para determinar uma tangente a uma curva num ponto P considerou outro ponto Q sobre a curva; considerou a reta PQ secante à curva. Seguidamente fez deslizar Q ao longo da curva em direcção a P, obtendo deste modo retas PQ que se aproximavam duma reta t a que Fermat chamou a reta tangente à curva no ponto P.
Fermat notou que para certas funções, nos pontos onde a curva assumia valores extremos, a tangente ao gráfico devia ser uma reta horizontal, já que ao comparar o valor assumido pela função num desses pontos P(x, f(x)) com o valor assumido no outro ponto Q(x+E, f(x+E)) próximo de P, a diferença entre f(x+E) e f(x) era muito pequena, quase nula, quando comparada com o valor de E, diferença das abcissas de Q e P. Assim, o problema de determinar extremos e de determinar tangentes a curvas passam a estar intimamente relacionados. 
Estas ideias constituiram o embrião do conceito de DERIVADA e levou Laplace a considerar Fermat "o verdadeiro inventor do Cálculo Diferencial". Contudo, Fermat não dispunha de notação apropriada e o conceito de limite não estava ainda claramente definido. 
No séc.XVII, Leibniz algebriza o Cálculo Infinitésimal, introduzindo os conceitos de variável, constante e parâmetro, bem como a notação dx e dy para designar "a menor possível das diferenças em x e em y. Desta notação surge o nome do ramo da Matemática conhecido hoje como " Cálculo Diferencial ". 
Assim, embora só no século XIX Cauchy introduzia formalmente o conceito de limite e o conceito de derivada, a partir do séc. XVII, com Leibniz e Newton, o Cálculo Diferencial torna-se um instrumento cada vez mais indispensável pela sua aplicabilidade aos mais diversos campos da Ciência.
11 - ORIGEM DOS SISTEMAS LINEARES E DETERMINANTES
  Na matemática ocidental antiga são poucas as aparições de sistemas de equações lineares. No Oriente, contudo, o assunto mereceu atenção bem maior. Com seu gosto especial por diagramas, os chineses representavam os sistemas lineares por meio de seus coeficientes escritos com barras de bambu sobre os quadrados de um tabuleiro.
Assim acabaram descobrindo o método de resolução por eliminação — que consiste em anular coeficientes por meio de operações elementares. Exemplos desse procedimento encontram-se nos Nove capítulos sobre a arte da matemática, um texto que data provavelmente do século 111 a.C.
Mas foi só em 1683, num trabalho do japonês Seki Kowa, que a idéia de determinante (como polinômio que se associa a um quadrado de números) veio à luz. Kowa, considerado o maior matemático japonês do século XVII, chegou a essa noção através do estudo de sistemas lineares, sistematizando o velho procedimento chinês (para o caso de duas equações apenas).
O uso de determinantes no Ocidente começou dez anos depois num trabalho de Leibniz, ligado também a sistemas lineares. Em resumo, Leibniz estabeleceu a condição de compatibilidade de um sistema de três equações a duas incógnitas em termos do determinante de ordem 3 formado pelos coeficientes e pelos termos independentes (este determinante deve ser nulo). Para tanto criou até uma notação com índices para os coeficientes: o que hoje, por exemplo, escreveríamos como a12, Leibniz indicava por 12.
A conhecida regra de Cramer para resolver sistemas de n equações a n incógnitas, por meio de determinantes, é na verdade uma descoberta do escocês Colin Maclaurin (1698-1746), datando provavelmente de 1729, embora só publicada postumamente em 1748 no seu Treatise of algebra. Mas o nome do suíço Gabriel Cramer (1704-1752) não aparece nesse episódio de maneira totalmente gratuita. Cramer também chegou à regra (independentemente), mas depois, na sua Introdução à análise das curvas planas (1750), em conexão com o problema de determinar os coeficientes da cônica geral
A + By + Cx + Dy2 + Exy + x2 = 0.
O francês Étienne Bézout (1730-1783), autor de textos matemáticos de sucesso em seu tempo, sistematizou em 1764 o processo de estabelecimento dos sinais dos termos de um determinante. E coube a outro francês, Alexandre Vandermonde (1735-1796), em 1771, empreender a primeira abordagem da teoria dos determinantes independente do estudo dos sistemas lineares — embora também os usasse na resolução destes sistemas.
O importante teorema de Laplace, que permite a expansão de um determinante através dos menores de r filas escolhidas e seus respectivos complementos algébricos, foi demonstrado no ano seguinte pelo próprio Laplace num artigo que, a julgar pelo título, nada tinha a ver com o assunto: "Pesquisas sobre o cálculo integral e o sistema do mundo".
O termo determinante, com o sentido atual, surgiu em 1812 num trabalho de Cauchy sobre o assunto. Neste artigo, apresentado à Academia de Ciências, Cauchy sumariou e simplificou o que era conhecido até então sobre determinantes, melhorou a notação (mas a atual com duas barras verticais ladeando o quadrado de números só surgiria em 1841 com Arthur Cayley) e deu uma demonstração do teorema da multiplicação de determinantes — meses antes J. F. M. Binet (1786-1856) dera a primeira demonstração deste teorema, mas a de Cauchy era superior.
Além de Cauehy, quem mais contribuiu para consolidar a teoria dos determinantes foi o alemão Carl G. J. Jacobi (1804-1851), cognominado às vezes "o grande algorista". Deve-se a ele a forma simples como essa teoria se apresenta hoje elementarmente. Como algorista, Jacobi era um entusiasta da notação de determinante, com suas potencialidades. Assim, o importante conceito de jacobiano de uma função, salientando um dos pontos mais característicos de sua obra, é uma homenagem das mais justas. 
12 - SURGIMENTO DA GEOMETRIA ANALÍTICA
  A Geometria, como ciência dedutiva, foi criada pelos gregos. Mas, apesa do seu brilhantismo faltava operacionalidade à geometria grega. E isto só iria ser conseguido mediante a Álgebra como princípio unificador. Os gregos, porém, não eram muito bons em álgebra. Mais do que isso, somente no século XVII a álgebra estaria razoavelmente aparelhada para uma fusão criativa com a geometria.
Ocorre porém que o fato de haver condições para uma descoberta não exclui o toque de genialidade de alguém. E no caso da geometria analítica, fruto dessa fusão, o mérito não foi de uma só pessoa. Dois franceses, Pierre de Fermat (1601-1665) e René Descartes (1596-1650), curiosamente ambos graduados em Direito, nenhum deles matemático profissional, são os responsáveis por esse grande avanço científico: o primeiro movido basicamente por seu grande amor, a matemática e o segundo por razões filosóficas. E, diga-se de passagem, não trabalharam juntos: a geometria analítica é um dos muitos casos, em ciência, de descobertas simultâneas e independentes.
Se o bem-sucedido Pierre de Fermat zeloso e competente conselheiro junto ao Parlamento de Toulouse, dedicava muitas de suas melhores horas de lazer à matemática, certamente não era porque faltasse, alguém em sua posição, outras maneiras de preencher o tempo disponível.
Na verdade Fermat simplesmente não conseguia fugia à sua verdadeira vocação e, apesar de praticar matemática como hobby, nenhum de seus contemporâneos contribuiu tanto para o avanço desta ciência quanto ele. Além da geometria analítica, Fermat teve papel fundamental na criação do Cálculo Diferencial, do Cálculo de Probabilidades e, especialmente, da teoria dos números, ramo da matemática que estuda as propriedades dos números inteiros.
A contribuição de Fermat à geometria analítica encontra-se num pequeno texto intitulado Introdução aos Lugares Planos e Sólidos e data no máximo, de 1636 mais que só foi publicado em 1679, postumamente, junto com sua obra completa.
 É que fermat, bastante modesto, era avesso a publicar seus trabalhos. Disso resulta, em parte, o fato de Descartes comumente ser mais lembrado como criador da Geometria Analítica.
O interesse de Descartes pela matemática surgiu cedo, no “College de la Fleche”, escola do mais alto padrão, dirigida por jesuítas, na qual ingressará aos oito anos de idade. Mas por uma razão muito especial e que já revelava seus pendores filosóficos: a certeza que as demonstrações ou justificativas matemáticas proporcionam.
Aos vinte e um anos de idade, depois de freqüentar rodas matemáticas em Paris (além de outras) já graduado em Direito, ingressa voluntariamente na carreira das armas, uma das poucas opções “dignas” que se ofereciam a um jovem como ele, oriundo da nobreza menor da França. Durante os quase nove anos que serviu em vários exércitos, não se sabe de nenhuma proeza militar realizada por Descartes. É que as batalhas que ocupavam seus pensamentos e seus sonhos travavam-se no campo da ciência e da filosofia.
A Geometria Analítica de Descartes apareceu em 1637 no pequeno texto chamado A Geometria como um dos três apêndices do Discurso do método, obra considerada o marco inicial da filosofia moderna. Nela, em resumo, Descartes defende o método matemático como modelo para a aquisição de conhecimentos em todos os campos.
A Geometria Analítica, como é hoje, pouco se assemelha às contribuições deixadas por Fermat e Descartes. Inclusive sua marca mais característica, um par de eixos ortogonais, não usada por nenhum deles. Mais, cada um a seu modo, sabiam que a idéia central era associar equações a curvas e superfícies. Neste particular, Fermat foi mais feliz. Descartes superou Fermat na notação algébrica.
  
13 - A MATEMÁTICA ORIENTAL
(ÁRABES, HINDUS E CHINESES)
Com o domínio romano exercido em toda a Grécia e com o posterior fechamento da escola de Atenas pelo imperador Justiniano, a matemática e as ciências gregas entraram em declínio. Muitos pesquisadores pegaram seus manuscritos e fugiram da Grécia e proximidades para o oriente médio. Isto fez com que a ciência oriental florescesse de maneira muito rápida. Este incremento das ciências orientais foi muito importante para o desenvolvimento da matemática.
Durante todo o período em que o império romano dominou o mundo conhecido da época, tanto economicamente quanto culturalmente, o oriente foi a parte mais desenvolvida. A parte ocidental não foi baseada em uma economia de irrigação, sua agricultura era extensiva, o que não estimulou o desenvolvimento da astronomia.
Assim, o ocidente se contentou com um mínimo de astronomia, alguma aritmética e algumas medições para o comércio e agrimensura. O estímulo para este desenvolvimento veio do oriente. Após a separação política entre ocidente e oriente, este estímulo praticamente desapareceu.
ÁRABES
CONTEXTO HISTÓRICO
Até o século VII os árabes encontravam-se divididos em várias tribos, algumas sedentárias e outras nômades. Geralmente estas tribos eram hostis entre si. Estas tribos, desde tempos remotos ocupavam a península arábica, localizada no oriente próximo e limitada pelo mar vermelho, golfo pérsico e oceano índico.
Em 613, Maomé (570-632) começa a pregação de uma nova religião, na condição de profeta de Alá (deus único e verdadeiro). Esta nova religião denominou-se religião Islâmica (Islam significa: submissão).
Em 622 ocorre a “hégira”, mudança de Maomé de Meca para Iatreb por causa das perseguições sofridas, marcando o início do calendário islâmico. Após muitos anos de lutas, Maomé consegue impor a nova religião a todos os muçulmanos, sendo Meca a principal cidade sagrada. As demais cidades logo também foram conquistadas e aderiram ao islamismo.
Depois da morte de Maomé, os árabes foram governados pelos califas (Alá confiava o cuidado dos fiéis). Estes califas estenderam o domínio muçulmano da Índia até a península Ibérica. Esta expansão árabe auxiliou para que a Europa interiorizasse a economia e aumentasse a ruralização da sociedade, expandindo o processo de feudos.
No início, as relações entre a Europa cristã e os muçulmanos foi extremamente violenta e antagônica. Neste período começam a ocorrer as cruzadas, com o intuito de tomar de volta a cidade santa de Jerusalém do domínio islâmico. Os ataques muçulmanos praticamente fizeram desaparecer o comércio cristão no mediterrâneo ocidental, contribuindo ainda mais para o processo de feudalismo na Europa.
Na península Ibérica os árabes realizaram uma revolução agrícola construindo canais de irrigação , açudes e moinhos d’água, introduzindo o cultivo de cana-de-açucar, algodão, cânhamo e arroz. Por todo o império circulavam moedas cunhadas em Bagdá, capital do império. Trabalhos em couros feitos em Córdoba e canais de irrigação em Valência foram algumas das soluções desenvolvidas na economia.
CONTEXTO MATEMÁTICO

Com o domínio dos Sassânidas, reis persas que governaram a mesopotâmia (Ciro e Xerxes), esta recuperou sua posição central ao longo das rotas comerciais, visto que sob o domínio romano e heleno haviam perdido. Não há muitos registros Sassânidas desta época. O que se sabe que era uma cultura muito rica, haja visto o conto “Mil e uma noites” de Omar Khayyam.
Depois da conquista árabe, em 641 teve origem Bagdá, em substituição à babilônia, que havia desaparecido. A matemática do período islâmico revela a mesma mistura de influências que se tornaram familiares em Alexandria e na Índia.
A matemática e a astronomia foram grandemente incentivadas pelos califas de Bagdá: Al-mansur (754-775), Harun Al-raschid (766-809) e Al-mamun (813-833). Este último organizou em Bagdá a “casa da sabedoria”, composta de uma biblioteca e um observatório.
As atividades matemáticas árabes começaram com a tradução dos Siddanthas hindus por Al-Fazari e culminaram com uma grande importância com Muhammad Ibn Musa Al-Khwarizmi, por volta de 825. Ele escreveu vários tratados sobre matemática e astronomia. Estes tratados explicavam o sistema de numeração hindu. A europa ficou conhecendo este sistema de numeração graças a uma cópia latina do século XII, visto que o original árabe se perdeu. A astronomia de Al-Khwarizmi era um resumo dos Siddanthas, o qual mostrava uma influência grega nos textos sânscritos.
Convém ressaltar que a palavra “álgebra” vem do árabe “al-jabr”, que siginifica “restauração”.
Os árabes tiveram um papel muito importante na história da matemática, pois eles traduziram, fielmente, os clássicos gregos (Apolônio, Arquimedes, Euclides, Ptolomeu e outros). Estes clássicos estariam perdidos para nós sem os árabes, visto o fechamento da escola de Atenas por Justiniano.

Outro matemático brilhante foi Omar Khayyam. Ele escreveu uma álgebra que continha uma investigação sistemática de equações cúbicas, utilizando a interseção de duas seções cônicas.
Jemshid Al-Kashi, matemático Persa resolveu equações cúbicas por iteração e por métodos trigonométricos, e também pelo método conhecido hoje como “método de Horner”. Este método tem uma forte influência chinesa, o que nos faz pensar que a matemática chinesa da dinastia Sung havia penetrado profundamente no mundo islâmico.
Por tudo isto, ressalta-se a importante influência do povo árabe na matemática. Convém ressaltar, também, que os muçulmanos ao expandir o islamismo cometeram um dos maiores crimes contra a humanidade.
 Após a queda de Alexandria frente aos muçulmanos, o califa mandou queimar todos os manuscritos encontrados na biblioteca (cerca de 600.000) argumentando que: “se constam do alcorão não precisam ser guardados e se não constam são inúteis”. Conta a lenda que os escritos alimentaram as caldeiras dos banhos durante seis meses.
É preciso lembrar, também, o papel das cruzadas. Com as cruzadas a Europa cristã teve, novamente, contato com a matemática grega, traduzida para o árabe. Isto veio a influenciar muito a Europa medieval e serviu como fonte para o desenvolvimento da matemática durante a idade média.
 
CHINESES
A civilização chinesa, bem como a civilização indiana, são muito mais antigas que as civilizações grega e romana, mas não mais antigas que as civilizações egípcia e mesopotâmicas.

CONTEXTO HISTÓRICO
A civilização chinesa originou-se às margens dos rios Yang-Tsé e Amarelo. Podemos dividir a história chinesa em quatro grandes períodos:
  • China Antiga (2000 ac – 600 ac)
  • China Clássica (600 ac – 221 dc)
  • China Imperial (221 dc – 1911 dc)
  • China Moderna (1911 dc – hoje)
Apesar da china antiga ter sido governada por monarquias Hsia, Shang e Chou, o poder real estava nas mãos de numerosos pequenos senhores, governantes de pequenas cidades. Este período foi caracterizado por inúmeras guerras, taxas sobre a população e muita pobreza do povo.
Durante o período clássico, o filósofo Confúcio pregava uma total reestruturação social e política. Confúcio pregava o respeito pelas autoridades, cuidados com a pobreza, humildade, ética por parte dos governantes e não fazer aos outros o que não queremos que nos façam. Confúcio não conseguiu, em vida, fazer com que suas idéias fossem aceitas pela aristocracia. No mesmo período é criado o taoísmo por Chang Tzu (399 ac – 295 ac), o qual proclamava uma ordem no universo e recomendava a paz e a benevolência governamental.
Estes conceitos foram criados em virtude dos desgovernos dos senhores e a miséria de seus súditos. Em 200 ac a dinastia Han criou um império que durou até o fim da china clássica. Esta dinastia expandiu os limites da china e adotou o confucionismo como religião oficial. Vindo da Índia, o budismo fundiu-se com o taoísmo e ganhou ampla aceitação entre os camponeses.
No período imperial, a china esteve envolvida em várias lutas internas. Com a queda da dinastia Han, os senhores começaram a lutar entre si para exercer o domínio em suas regiões. Em 618 dc a dinastia Tang unificou a china. Depois dela seguiram-se as dinastias Sung e Yuan. Estas dinastias patrocinaram as artes e a literatura, criando assim a era de ouro. Com isto a china alcançou grandes dimensões e muita influência.
 Começa a ocorrer a abertura do comércio chinês com a Europa, via oriente médio. As viagens de Marco Pólo à corte de Kublai Khan proporcionaram o primeiro contato da civilização chinesa com o mercado europeu.
O império chinês durou muito mais tempo que o romano. Só foi rompido com a revolução de 1911. É importante ressaltar que ao contrário do império romano, os imperadores chineses, principalmente Kublai Khan, produziram uma cultura rica e uma base intelectual sólida. Enquanto os monarcas romanos eram, geralmente militares analfabetos, os monarcas chineses valorizavam muito a intelectualidade.
Pelo fato de que os chineses se interessavam mais por literatura e arte, a matemática e a ciência chinesa sofreram um atraso em relação as outras matérias.
CONTEXTO MATEMÁTICO
Os historiadores consideram muito difícil datar documentos matemáticos da China. O clássico mais antigo da matemática chinesa “Chou Pei Suang Ching” tem uma variação de quase mil anos entre suas datas mais prováveis de escrita. A maior dificuldade em datar este documento ocorre porque foi escrito por várias pessoas, em períodos diferentes. O Chou Pei indica que na China a geometria originou-se da mensuração, assim como na babilônia, sendo um exercício de aritmética ou álgebra. Neste trabalho há indicações que os chineses conheciam o teorema de Pitágoras.
Outra publicação tão antiga quanto o Chou Pei, é o livro de matemática “Chui Chang Suan Shu” (Nove capítulos sobre a arte da matemática, em torno de 1200 a.c.). Entre vários assuntos abordados, chama a atenção problemas sobre mensuração de terras, agricultura, sociedades, engenharia, impostos, cálculos, soluções de equações e propriedades dos triângulos retângulos. Nesta mesma época os Gregos compunham tratados logicamente ordenados e expostos de forma sistemática.
Os chineses seguiam a mesma linha babilônica, compilando coleções com problemas específicos. Assim como os Egípcios, os chineses alternavam, em seus experimentos, resultados precisos e imprecisos, primitivos e elaborados. Nesta publicação aparecem soluções de sistemas lineares com números positivos e negativos.
Como os chineses gostavam de resolver sistemas, os diagramas foram muito utilizados por eles. É interessante observar que o quadrado mágico teve seu primeiro registro efetuado por este povo, mesmo que sua origem é mais antiga, porém desconhecida.
Durante toda sua história, a ciência chinesa sofreu com vários problemas, que impediram sua continuidade e aprimoramento. Em 213 a.c. o imperador da China mandou queimar os livros existentes. Mesmo que algumas cópias tenham sido salvas, a perda foi irreparável. No século XX, Mao-Tsé-Tung, com sua “Revolução Cultural” também promoveu uma queima generalizada de livros, considerados “subversivos”.
Provavelmente houve contato cultural entre Índia e China e entre a China e o ocidente. Muitos dizem que houve influência babilônica na matemática chinesa, apesar de que a China não utilizava frações sexagesimais. O sistema de numeração chinês era decimal, porém com notações diferentes das conhecidas na época. Eles utilizavam o sistema de “barras” (I, II, III, IIII, T). Não podemos precisar a idade deste sistema de numeração, porém sabe-se que ele é anterior ao sistema de notação posicional.
Esta notação em barras não era simplesmente utilizada em placas de calcular (escrita). Barras de bambu, marfim ou de ferro eram carregadas em sacolas pelos administradores para que os cálculos fossem efetuados. Este método era mais simples e rápido do que o cálculo realizado com ábaco, soroban ou suan phan.
Os chineses conheciam as operações sobre frações comuns, utilizando o m.d.c. Trabalhavam com números negativos por meio de duas coleções de barras (vermelha para os coeficientes positivos e preta para os negativos), porém não aceitavam números negativos como solução de uma equação.
A matemática chinesa é tão diferente da matemática de outros povos da mesma época que seu desenvolvimento ocorreu de forma independente.Lui Hui, no terceiro século, determinou um valor para Pi utilizando, primeiro um polígono regular com 96 lados (3,14) e depois utilizando um polígono regular com 3072 lados (3,14159).
O ponto alto da matemática chinesa ocorreu no século XIII durante o fim do período Sung. Nesta época foi descoberta a impressão, a pólvora, o papel e a bússola. Obras chinesas desta época influenciaram fortemente a Coréia e o Japão. Muitas desta obras desapareceram da China neste período, reaparecendo apenas no século XIX.
Yang Hui (1261 – 1275), matemático talentoso trabalhou com séries numéricas e apresentou uma variação chinesa para o triângulo de Pascal.
Sabe-se que a partir da idade média na Europa, a matemática chinesa não tinha realizações que se comparassem às européias e do oriente próximo. Possivelmente a China absorvia mais matemática do que enviava. Possivelmente as ciências chinesas e hindus sofreram influências mútuas durante o primeiro milênio de nossa era.
HINDUS
CONTEXTO HISTÓRICO

Escavações arqueológicas ocorridas em Mohenjo Daro nos dão uma indicação de uma civilização muito antiga e de uma cultura muito alta na Índia, ocorrida na mesma época em que eram construídas as pirâmides no Egito. Posteriormente o país foi ocupado pelos invasores arianos que impuseram o sistema de castas, o qual trouxe um atraso muito grande ao desenvolvimento. Estes invasores arianos desenvolveram na índia a literatura sânscrita.
Na mesma época em que Pitágoras começou a desenvolver seus teoremas e axiomas na Grécia, Buda agia na Índia. Especula-se que Pitágoras esteve em contato com Buda e que desenvolveu seu mais famoso teorema com os hindus.
Os indianos dos primeiros tempos foram exterminados por volta de 1500 ac. Este país tinha como política, vários pequenos principados desunidos, o que propiciou muitas invasões em seu território (arianas, persas, gregas, árabes e ingleses). Estes invasores se estabeleceram como classe dominante, evitando a miscigenação com o povo nativo.
Entre 3000 ac e 1500 ac viveu na índia um povo, da região do rio Indo, que cultivava a agricultura e morava em cidades. Este povo foi destruído pelos arianos. Entre 1500 ac e 500 ac os arianos desenvolveram o hinduismo, combinação de religião, filosofia e estrutura social, a qual veio a desenvolver a base de sua civilização.
O hinduismo é um conjunto de crenças e leis que se baseia em três idéias principais: culto a um grande número de deuses, transmigração da alma e o sistema de castas que dividia rigidamente a sociedade indiana em quatro classes: Brahmana (sacerdotes), kshatriya (guerreiros), vaisya (comerciantes e artesãos) e sudra (camponeses).
Sidarta Gautama (Buda), por volta de 500 ac se revolta contra esta filosofia. O budismo foi uma resposta ao caos e à agitação desta época, encontrando muitos adeptos, principalmente entre os pobres. Até começar a declinar, por volta de 500 d.c. o budismo já havia se espalhado pela China, Japão e sudeste asiático.
Em 320 a.c. Chandragupta Mauria unificou todos os pequenos estados indianos e estabeleceu o império Mauriano, seguido pelo seu neto Açoka (272-232 ac).. Em 185 ac o império voltou a se desintegrar e ficar dividido em pequenos estados. Da queda do império mauriano até 200 dc houve um grande desenvolvimento cultural, por meio da literatura, arte, ciência e filosofia. Em 320 dc a índia foi novamente unificada por Chandragupta I, originando o império dos Gupta, que se manteve até 470 dc, o qual é considerado a era clássica da Índia.
Com a invasão dos árabes, o islamismo foi introduzido na índia, conquistando partes da índia ocidental nos séculos VIII, IX e X. Em 1206 Kutb ud-Din-Aibak fundou o sultanato muçulmano de Dehli. Em 1526 Babur instala o império Mogol (Turco). No século XVII a Índia é invadida pelos Ingleses que exercem uma tirania muito grande contra a sua população.

CONTEXTO MATEMÁTICO

A matemática hindu apresenta mais problemas históricos do que a grega, pois os matemáticos indianos raramente se referiam a seus predecessores e exibiam surpreendente independência em seu trabalho matemático.
A Índia, assim como o Egito, tinha seus “esticadores de corda”. As primitivas noções geométricas tomaram corpo no escrito conhecido como “Sulvasutras” (regras de cordas). Este escrito tem três versões, sendo que a mais conhecida tem o nome de Apastamba.
Nesta primeira versão, da mesma época de Pitágoras, são encontradas regras para construção de ângulos retos por meio de ternas de cordas cujos comprimentos formam tríadas pitagóricas. Este escrito, provavelmente, sofreu influência babilônica, visto que estas tríadas encontram-se nas tábuas cuneiformes.
A origem e a data dos Sulvasutras são incertos, de modo que não é possível relacioná-los com a primitiva agrimensura egípcia ou com o problema grego de duplicar um altar.Após esta publicação, surgiram os “Siddhantas” (sistemas de astronomia). O começo da dinastia Gupta (290) assinalou um renascimento da cultura sânscrita e estes escritos podem ter sido um produto disto.
 A trigonometria de Ptolomeu se baseava na relação funcional entre as cordas de um círculo e os ângulos centrais que subentendem. Para os autores dos Siddhantas, a relação ocorre entre metade de uma corda de um círculo e metade do ângulo subentendido no centro pela corda toda.
  A Índia teve muitos matemáticos que fizeram grandes contribuições. Entre eles podemos destacar:
  • Aryabhata
Publicou, em 499, uma obra intitulada “Aryabhatiya”. Esta publicação é um pequeno volume sobre astronomia e matemática, semelhante aos “Elementos” de Euclides, porém de oito séculos antes. São compilações de resultados anteriores. Esta obra contém: nome das potências de dez, até a décima; regras de mensuração (muitas erradas); área do triângulo; volume da pirâmide (incorreto); área do círculo; volume da esfera (incorreto) e áreas de quadriláteros (algumas incorretas). Também encontramos cálculos com a medida do tempo e trigonometria esférica.
  • Brahmagupta
Viveu na Índia central pouco mais de cem anos depois de Aryabhata. Tem pouco em comum com seu predecessor que vivia no leste da Índia. Seu trabalho mais importante foi a generalização da fórmula de Heron para achar a área de qualquer quadrilátero. Também trabalhou na solução de equações quadráticas com raízes negativas.
  • Bhaskara
Considerado o mais importante matemático do século doze (1114 – 1185). Ele preencheu as lacunas do trabalho de Brahmagupta. É dele a primeira resposta plausível para a divisão por zero. Em seu trabalho “Vija-Ganita” ele afirma que tal quociente é infinito. Sua outra obra, “Lilavati”, apresenta tópicos sobre equações lineares e quadráticas, determinadas e indeterminadas, mensuração, progressões aritméticas e geométricas, radicais, tríadas pitagóricas, entre outras. Sua obra representa a culminação de contribuições hindus anteriores.
  • Ramanujan
Após Bhaskara, a Índia passou vários séculos sem matemáticos de importância comparável. Srinivasa Ramanujan (1887-1920) é considerado o gênio hindu, em aritmética e álgebra, do século vinte.
A introdução de uma notação para uma posição vazia, o símbolo para o zero, foi o segundo passo para o nosso moderno sistema de numeração.
Não se sabe se o número zero (diferente do símbolo para a posição vazia) surgiu junto com os nove numerais hindus. É bem possível que o zero seja originário do mundo Grego, talvez de Alexandria.
 Possivelmente foi transmitido à Índia depois que o sistema posicional já estava estabelecido lá. É interessante observar que os Maias do Yucatán (México), anterior à Colombo, usavam notação posicional, com notação para a “posição vazia”. Com a introdução, na notação hindu, do décimo numeral, um ovo de ganso para o zero, o nosso moderno sistema de numeração para os inteiros estava completo.
A nova numeração, geralmente chamada de hindu-arábica, é uma nova combinação dos três princípios básicos, todos de origem antiga:
i) base decimal
ii) notação posicional
iii) forma cifrada para cada um dos dez numerais
Nenhum destes de se deveu, originalmente, aos hindus, mas foi devido a eles que os três foram ligados pela primeira vez para formar o nosso sistema de numeração.
Outra contribuição importante dos hindus foi a introdução de um equivalente da função seno na trigonometria para substituir a tabela de cordas dos gregos. A trigonometria hindu era um instrumento útil e preciso para a astronomia.

14 - A MATEMÁTICA NA ANTIGUIDADE
(PRÉ-HISTÓRIA, EGITO ANTIGO, MESOPOTÂMIA E GRÉCIA ANTIGA)

I – Pré-História
Considera-se como pré-história todo o período anterior a escrita. Neste período o homem era nômade, vivia em pequenos grupos, caçava, pescava e morava em cavernas. Não havia civilização como hoje nós a conhecemos.

·  Contexto Histórico
Durante a pré-história a sociedade era extremamente rígida. As pequenas comunidades eram formadas por clãs ou tribos comandadas por um líder ou chefe tribal. Não havia ascensão social, fora quando a autoridade do chefe era contestada e conseguia-se um novo líder por meio de lutas.

Não havia forma alguma de política. Neste período havia a “lei do mais forte”.

Nesta sociedade primitiva, os homens caçavam e obtinham todo tipo de alimento. Ás mulheres estava destinado cuidar dos filhos e preparar o alimento que os homens traziam.
As comunidades (tribos) eram pequenas, mais ou menos quarenta pessoas por grupo, pois a alimentação era escassa e em pouco tempo o alimento acabava em determinado lugar. Por este motivo os grupos eram nômades, viviam se deslocando, procurando alimentos.
Também não existia um processo econômico propriamente dito, pois não existiam ainda os processos de troca de mercadorias nem a cunhagem de moedas. As pessoas sobreviviam com aquilo que obtinham a cada dia.
Com o passar do tempo, as civilizações propriamente ditas, começaram a se desenvolver no crescente fértil (rios Tigre e Eufrates na Mesopotâmia, Rios Indo e Ganges na Índia e Delta do Nilo na África) e também onde hoje está situada a América Central, com as culturas Asteca e Maia.
O rompimento da pré-história e por conseqüência, a criação das civilizações e das grandes cidades, só foi possível com o desenvolvimento da agricultura, em um processo que ficou conhecido como “Revolução Agrícola”. Esta foi a primeira grande revolução que mexeu com toda a humanidade. A segunda seria a “Revolução Industrial” e a terceira a “Revolução Tecnológica”.

·  Contexto matemático

Este período foi marcado por um baixíssimo nível intelectual, científico e matemático. Os aspectos sociais, políticos e econômicos acima citados, tiveram influência direta nesta pouca produção intelectual das sociedades. Mesmo assim, podemos citar algumas descobertas científicas e matemáticas.
Neste período houve a elaboração de um processo rudimentar de contagem: ranhuras em ossos, marcas em galhos, desenhos em cavernas e pedras. Também podemos citar aqui o processo que muitos utilizavam para relacionar quantidades, ou seja, para cada unidade obtida, era colocada uma pequena pedra em um saquinho.
Alguns povos, como os Sioux (tribo indígena americana) confeccionaram calendários pictográficos, desenhados em cavernas.
Destaca-se também a confecção de instrumentos e artefatos de guerra (primeiro em pedra, depois em bronze e ferro).
Como já comentamos anteriormente, foi somente após a revolução agrícola que as descobertas científicas e matemáticas tiveram um maior impulso. Esta revolução abriu o caminho não só para a criação das grandes civilizações, mas também para tudo aquilo que cerca esta construção.

II – Egito Antigo

A civilização Egípcia se desenvolveu ao longo de uma extensa faixa de terra fértil que margeava o rio Nilo. Este rio prestou-se muito ao estabelecimento de grupos humanos.
Suas margens férteis revelaram-se propícias à agricultura e, ainda, suas águas caudalosas facilitavam a abertura de canais de irrigação e a construção de diques. O estudo do Egito antigo está determinado entre 4.000 a.c. à 30 a.c.

Houveram vários períodos dentro da história egípcia antiga, mas todos eles tiveram basicamente o mesmo aspecto social político e econômico, bem como matemático e científico. Somente com a invasão pelos romanos no século I a.c. é que ocorre um rompimento com sua cultura milenar.

·  Contexto Histórico

A sociedade Egípcia era extremamente rígida. A pirâmide social era fixa e composta desta maneira: Faraó (nobreza) – sacerdotes – escribas – camponeses - escravos. Havia uma administração estatal, centralizada no faraó que era o senhor absoluto de tudo que havia no Egito. O poder do faraó era fortalecido pela crença que o poder divino estava vinculado ao poder civil na pessoa do faraó, considerado um deus na terra.
Além do faraó que era o senhor absoluto, havia uma poderosa nobreza fundiária que cooperava na administração  e na exploração do trabalho dos camponeses. Apenas a família do faraó, os sacerdotes e os nobres tinham acesso a uma educação rudimentar. Alguns escribas também obtinham, mediante vontade do faraó, acesso à educação.
Em um primeiro momento a economia Egípcia estava baseada na agricultura e no trabalho escravo. Os camponeses cultivavam a terra e entregavam aos nobres e ao faraó. Eles só tinham direito a uma pequena parte dos produtos para sua subsistência.
Em um segundo momento a economia foi ampliada para um comércio de troca de mercadorias com outros povos que viviam em outras regiões, principalmente os mesopotâmicos.
Pelo fato de que a sociedade egípcia era uma sociedade extremamente fixa, centrada na pessoa do faraó, que não permitia uma maior abertura para as classes inferiores, as ciências também foram prejudicadas. Mas, mesmo assim houve um grande avanço científico e matemático neste período.

·  Contexto matemático

Um dos ramos da ciência que teve um avanço significativo foi a medicina. Os médicos (sacerdotes) egípcios possuíam um grande conhecimento na medicina, como bem comprovam as múmias de vários faraós descobertas nos dois últimos séculos, bem como o acesso a vários papiros.
Na matemática, também tivemos grandes avanços. A matemática egípcia sempre foi essencialmente prática. Quando o rio Nilo estava no período das cheias, começavam os problemas para as pessoas. Para resolver este problema foram desenvolvidos vários ramos da matemática. Foram construídas obras hidráulicas, reservatórios de água e canais de irrigação no rio Nilo. Procedeu-se a drenagem dos pântanos e regiões alagadas.
Começou-se também com uma geometria elementar e uma trigonometria básica (esticadores de corda) para facilitar a demarcação de terras. Com isto procedeu-se a um princípio de cálculo de áreas, raízes quadradas e frações. Também sabemos que os egípcios conheciam as relações métricas em um triângulo retângulo. O teorema de Pitágoras, na realidade, já era conhecido por povos bem mais antigos que os gregos.
No século XVIII d.c. foram descobertos vários papiros em escavações no Egito. Do ponto de vista matemático os mais importantes são os papiros de Moscou e os Papiros de Rhind. Estes papiros trazem uma série de problemas e coleções matemáticas em linguagem hieróglifa. Só foi possível a decifração desta linguagem, por Champolion, quando em 1799 uma expedição do exército Francês, sob o comando de Napoleão Bonaparte, descobriu perto de Rosetta, Alexandria uma pedra com escrita em três línguas: grego, demótico e hieróglifa. Somente com esta pedra foi possível decifrar a linguagem hieróglifa e traduzir estes papiros com grandes preciosidades matemáticas egípcias.
Outra ciência que teve um avanço muito grande neste período foi a astronomia. Os sacerdotes egípcios faziam cálculos astronômicos para determinar quando iriam ocorrer as cheias do Nilo. Baseados nestes cálculos eles construíram um calendário com 12 meses de 30 dias.
A construção das grandes pirâmides faz supor que o conhecimento matemático dos egípcios era muito mais avançado que o conhecido nos papiros. Talvez o fato da escrita ser muito difícil tenha sido um dos motivos que impediu este registro. Talvez, ainda, estes registros tenham sido feito em papiros que não chegaram aos nossos dias.
Podemos afirmar, com absoluta certeza, que a matemática egípcia foi um dos pilares da matemática grega, a qual foi a base para a nossa matemática moderna. Isto em geometria, trigonometria ou mesmo na astronomia.

III – Mesopotâmia

A Mesopotâmia, que em Grego significa “terra entre rios”, situava-se no oriente médio, no chamado crescente fértil, entre os rios Tigre e Eufrates, onde hoje está situado o Iraque e a Síria, principalmente.
Os povos que formavam a Mesopotâmia foram os Sumérios, Acádios, Amoritas, Caldeus e Hititas, os quais lutavam pela posse das terras aráveis.
conquistas de vários povos, ao contrário do que ocorreu no Egito. As duas civilizações, Egípcia e Mesopotâmica, desenvolveram-se no mesmo período. Mas, este desenvolvimento deu-se em separado, não havendo um intercâmbio de informações.
As mesmas dificuldades que acarretaram o desenvolvimento das ciências no Egito foram a mola propulsora deste desenvolvimento nesta região. Porém ao contrário do que ocorria com as águas do rio Nilo, os períodos de cheia dos rios Tigre e Eufrates eram bastante irregulares, obrigando a realização de numerosas obras de irrigação e drenagem, com períodos de observação e desenvolvimento com uma maior dificuldade.

·  Contexto Histórico

A população residia em grandes cidades, governadas por um rei-sacerdote, chamado Patesi. Como esta região estava situada em uma região permanentemente sujeita a invasões, estas cidades eram extremamente militarizadas.
É desta região a elaboração do primeiro código escrito de leis. O código de Hamurabi, conhecido como “Lei de Talião”. Este código foi escrito pelo rei Hamurabi, em torno de 2.000 a.c. e privilegiava principalmente a nobreza, em detrimento do restante da população.
Durante o período entre 4.000 a.c. e 1200 a.c. foi inventada uma das primeiras formas conhecidas de escrita, a escrita cuneiforme e a fundação de grandes cidades (Lasash, Ur, Uruk e Babilônia). A escrita cuneiforme era realizada por meio de cunhas produzidas em tabletes de barro cozido, o qual garantia a sua permanência e conservação por um longo período de tempo, sendo que muitos tabletes chegaram até nossos dias, permitindo acesso àquela cultura. O processo de decifrar esta escrita só foi conseguido no século XIX por Henry Cheswike Rawlison e Georg Friedrich Grotenfrend.
Uma das tabelas mais importantes, sob o ponto de vista matemático, foi a chamada tábua “Plimpton 322”, a qual traz uma série de informações matemáticas, entre elas a relação entre os três lados de um triângulo.
Assim como a sociedade egípcia, a sociedade mesopotâmica tinha sua pirâmide social extremamente rígida, não permitindo a mobilidade social. Esta pirâmide tinha duas camadas. A camada mais alta era formada pelo rei e seus familiares, seguidos por uma nobreza fundiária, sacerdotes e ricos mercadores. Na base da sociedade estavam os camponeses e os escravos. Esta sociedade era altamente militarizada e extremamente cruel para com os povos dominados por meio de guerras ou da cobrança de impostos.
Com o advento do código de Hamurabi esta sociedade foi dividida em três grupos distintos: Homens livres privilegiados (grandes proprietários de terra, comerciantes e sacerdotes); Homens livres (artesãos, pequenos comerciantes e servidores no palácio real) e Escravos (prisioneiros de guerras ou pessoas que não conseguiam pagar as suas dívidas).
A economia estava baseada na agricultura e no comércio de trocas. Visto a localização geográfica da região que facilitava o contato entre os povos conhecidos da época.
Não havia um processo político como conhecemos hoje, pois o rei detinha o poder absoluto e total.

·  Contexto matemático

A ciência e, por conseqüência, a matemática mesopotâmica teve um grande desenvolvimento por parte dos sacerdotes que detinham o saber nesta civilização. Assim como a matemática Egípcia, esta civilização teve uma matemática e/ou ciência extremamente prática. As matemáticas orientais surgiram como uma ciência prática, com o objetivo de facilitar o cálculo do calendário, a administração das colheitas, organização de obras públicas e a cobrança de impostos, bem como seus registros.
As águas dos rios Tigre e Eufrates proporcionavam facilidades para o transporte de mercadorias, o que ajudou a desenvolver um processo de navegação.
Foram desenvolvidos nestes rios grandes projetos de irrigação das terras cultiváveis e a construção de grandes diques de contenção, abrindo assim o caminho para o desenvolvimento de uma engenharia primitiva.
Procedeu-se ao desenvolvimento de uma astronomia rudimentar para o cálculo do período de cheias e vazantes dos rios, mesmo que estes períodos não fossem regulares como os do rio Nilo no Egito.
Os Babilônicos (assim também eram chamados os povos mesopotâmicos) tinham uma maior habilidade e facilidade para efetuar cálculos, talvez em virtude de sua linguagem ser mais acessível que a egípcia. Eles tinham técnicas para equações quadráticas e bi-quadráticas, além de possuírem fórmulas para áreas de figuras retilíneas simples e fórmulas para o cálculo do volume de sólidos simples. Sua geometria tinha suporte algébrico. Também conheciam as relações entre os lados de um triângulo retângulo e trigonometria básica, conforme descrito na tábua “Plimpton 322”.
Ao contrário dos Egípcios, que tinham um sistema posicional de base 10, os babilônicos possuíam um sistema posicional sexagesimal bem desenvolvido, o qual trazia enormes facilidades para os cálculos, visto que os divisores naturais de 60 são 1,2,3,4,5,6,10,12,15,20,30,60, facilitando o cálculo com frações.
Por tudo isto que foi descrito, a matemática Babilônica tinha um nível mais elevado que a matemática Egípcia.
Pelo fato da Mesopotâmia estar situada no centro do mundo conhecido da época, o que propiciava grandes invasões e muito contato com outros povos, ela teve um papel muito grande no desenvolvimento da matemática de um povo que teve um papel muito importante na história: o povo Grego. Graças a este contato com o povo Grego, muito desta matemática chegou até os nossos dias.

IV – Grécia Clássica

Consideramos o período compreendido entre 2.000 a.c. até 35 a.c. como sendo o período clássico ou período de ouro do povo Grego. Período este que se encerra com o domínio da Grécia pelos Romanos.
A civilização Grega foi formada por muitos povos que se originaram da Europa central e da Ásia. Antes, porém, de comentar sobre estes povos convém fazer um breve comentário sobre um povo que teve uma influência muito grande sobre a construção da Grécia e de sua cultura: os Cretenses.

Os Cretenses, habitantes da ilha de Creta, desde 3.000 a.c., com expressão maior entre 2.000 a.c. à 1.500 a.c., notabilizaram-se pelo comércio marítimo, artesanato, arte e a influência sobre os Gregos. Tiveram um comércio muito grande com o Egito, Fenícia e a Síria. As transações comerciais eram registradas em papiros com uma escrita acessível aos mercadores.

Este contato com os demais povos possibilitou um intercâmbio muito grande com as demais culturas e propiciou avanços matemáticos e científicos ampliando os conhecimentos tecnológicos do período, haja vista as ruínas de banheiros e sistemas de esgotos descobertos em escavações.

O povo da ilha de Creta tinha uma sociedade original e desenvolvida, dando lugar de destaque à mulher, ao contrário das demais civilizações do período. Registros indicam que não havia escravidão.

Quando a ilha de Creta, mais precisamente a cidade de Cnossos,  foi ocupada pelos Aqueus, esta civilização foi subjugada. Apesar de conquistadores, os Aqueus absorveram a cultura Cretense.

A civilização grega, propriamente dita, foi formada nos séculos XX a.c. a XII a.c. por invasões de Aqueus, Jônios, Eólios e Dórios.

·  Contexto Histórico

A Grécia antiga é considerada como o berço da civilização ocidental. Mas, na realidade, vimos que anteriormente a ela desenvolveu-se a civilização cretense. Como a Grécia antiga era chamada de Hélade, este povo foi denominado, na antiguidade, “Helenos”.

A história da Grécia pode ser dividida em quatro períodos:

·  Período Homérico (Séculos XII até VIII a.c.)

Pouco se sabe sobre este período. Sabe-se apenas que ele começou com a invasão dos Dórios. As poucas informações são os vestígios arqueológicos obtidos em escavações e os poemas “Ilíada” e “Odisséia” de Homero.
·   
·  Período Arcaico (Séculos VIII até VI a.c.)

Este período foi marcado por uma grande expansão marítima e comercial pelo mediterrâneo, estreitando os laços econômicos com os demais povos, tornando a atividade comercial a mais importante da economia Grega.
Esta atividade consistia em comércio exterior, com a exportação de mármore, azeite, vinhos, frutas e na importação de trigo, metais, madeiras, tecidos. Com este crescimento da nova atividade, uma poderosa classe de comerciantes surgiu. Esta classe passou a lutar por seus direitos, principalmente políticos, visto que eram as famílias nobres que estavam no poder. Com isto, ocorreram grandes modificações nas formas políticas.
A maior delas foi a criação da democracia na cidade-estado de Atenas. Mas, mesmo a democracia era excludente, visto que escravos, estrangeiros e mulheres não podiam participar das decisões. Esta economia também estava baseada no emprego, de forma predominante, da mão-de-obra escrava. Os escravos eram obtidos de três maneiras: nascimento, guerras de conquista e condenação por dívidas.
·  Período Clássico – Época de Ouro (Séculos VI até IV a.c.)
Durante este período a civilização grega atingiu seu apogeu, com a estabilização da democracia, obras dos principais artistas e filósofos, bem como o desenvolvimento do estudo da matemática e ciências.
Podemos citar, deste período, Demócrito (460-370 a.c.) que foi o primeiro a afirmar a existência do átomo como elemento indivisível e Hipócrates (460-377 a.c.) que, no tratamento médico, defendeu uma análise das doenças a partir dos sintomas apresentados pelo paciente, em substituição às crenças e superstições.
Este período também foi marcado por guerras contra os Persas e também guerras internas entre as cidades-estado, principalmente a guerra entre Atenas e Esparta.

·  Período Helenístico (Séculos IV até I a.c.)

Este período começa com a dominação da Grécia, enfraquecida pelas guerras internas e contra os Persas, pelos Macedônios. Em 308 a.c. Filipe da Macedônia derrotou os exércitos Gregos. A dominação foi mantida por seu filho, Alexandre Magno, o qual dominou o mundo conhecido da época, chegando até partes da Índia. Alexandre havia sido aluno de Aristóteles e por este motivo, mesmo com a dominação militar, as ciências e as artes continuaram progredindo, mas em ritmo mais reduzido. Com Alexandre Magno ocorreu a fusão da cultura Grega com a oriental, o que auxiliou em muito a expansão das ciências e da matemática, principalmente em contatos com Árabes e Hindus.
Com a morte de Alexandre, seu império foi dividido entre seus três generais: Antígono (Grécia e Macedônia), Ptolomeu (Egito) e Seleuco (Mesopotâmia, Síria e Pérsia).
No século I a.c. todas estas regiões foram dominadas pelos romanos. Com esta dominação a cultura grega entrou em declínio, culminando este declínio com o fechamento da escola de Atenas pelo imperador romano Justiniano.
Durante todos estes períodos a sociedade Helena apresentava diferentes modos, em função de suas estruturas políticas das suas cidades-estado. Mas, existiam semelhanças entre elas, tais como: família patriarcal, conceitos de cidadania, sociedade fechada, sem possibilidade de mobilidade social.
No âmbito da política, o grande desenvolvimento foi a democracia, primeiro com Drácon, depois Sólon e por fim Clístenes. Mas, foi somente com Péricles (462-429 a.c.) que a democracia se consolidou. Mas, esta democracia era apenas para os cidadãos. Estrangeiros, mulheres e escravos estavam proibidos de participar da vida política.
Podemos afirmar, com certeza, que a liberdade de pensamento da civilização Grega contribuiu para o desenvolvimento das ciências, em especial, a matemática. O intercâmbio de idéias e conhecimento entre o oriente e o ocidente frutificou nas inúmeras bibliotecas que se formaram, como a de Alexandria (Egito), que possuía cerca de 400 mil volumes.

·        Contexto matemático

A base da revolução matemática exercida pela civilização Grega partiu de uma idéia muito simples. Enquanto Egípcios e Babilônicos perguntavam: “como”? os filósofos gregos passaram a indagar: “por quê”? Assim, a matemática que até este momento era, essencialmente, prática, passou a ter seu desenvolvimento voltado para conceituação, teoremas e axiomas.
A matemática, através da história, não pode ser separada da astronomia. Foram as necessidades relacionadas com a irrigação, agricultura e com a navegação que concederam à astronomia o primeiro lugar nas ciências, determinando o rumo da matemática.

Dois fatores estimularam e facilitaram o grande desenvolvimento da ciência e da matemática pelos filósofos gregos: a substituição da escrita grosseira do antigo oriente por um alfabeto fácil de aprender e a introdução da moeda cunhada, o que estimulou ainda mais o comércio.

A matemática moderna teve origem no racionalismo jônico, e teve como principal estimulador Tales de Mileto, considerado o pai da matemática moderna. Este racionalismo objetivou o estudo de quatro pontos fundamentais: compreensão do lugar do homem no universo conforme um esquema racional, encontrar a ordem no caos, ordenar as idéias em seqüências lógicas e obtenção de princípios fundamentais. Estes pontos partiram da observação que os povos orientais tinham deixado de fazer todo o processo de racionalização de sua matemática, contentando-se, tão somente, com sua aplicação.
Neste período começam a surgir as primeiras divisões nas ciências.

 Na Grécia surgem dois grupos distintos de filósofos: os Sofistas e os Pitagóricos, os quais passam a analisar as ciências de dois modos diferentes. Os Sofistas abordavam os problemas de natureza matemática como uma investigação filosófica do mundo natural e moral, desenvolvendo uma matemática mais voltada à compreensão do que à utilidade. É o começo da abstração matemática, em detrimento da matemática essencialmente prática.

Os Pitagóricos, sociedade secreta criada por Pitágoras de Samos, enfatizavam o estudo dos elementos imutáveis da natureza e da sociedade. O chefe desta sociedade foi Arquitas de Tarento. Os Pitagóricos estudavam o quadrivium (geometria, aritmética, astronomia e música).

Sua filosofia pode ser resumida na expressão “tudo é número”, com a qual diziam que tudo na natureza pode ser expresso por meio dos números. Pitágoras dizia que: “tudo na natureza está arranjado conforme as formas e os números”.

Aos Pitagóricos (Pitágoras, principalmente) podemos creditar duas descobertas importantes: o conceito de número irracional por meio de segmentos de retas incomensuráveis e a axiomatização das relações entre os lados de um triângulo retângulo (teorema de Pitágoras), que já era conhecido por babilônicos e egípcios.

Paralelo a isto, os matemáticos gregos do período clássico começam a trabalhar com o princípio da indução lógica (apagoge), que é o início da axiomática, a qual foi desenvolvida por Hipócrates. Os três problemas que deram início ao estudo da axiomática foram: trissecção de um ângulo, duplicação do volume do cubo (problema délico) e quadratura do círculo.

Com as campanhas de Alexandre, o grande, houve um avanço rápido da civilização grega em direção ao oriente. Assim, a matemática grega sofreu as influências dos problemas de administração e da astronomia desenvolvidas no oriente. Este contato entre as duas matemáticas foi extremamente importante e produtivo, principalmente no período de 350 a 200 a.c.. Neste contexto, Alexandria torna-se o centro cultural e econômico do mundo helenístico.

Durante todo o período grego, vários filósofos e matemáticos deram sua contribuição ao desenvolvimento da matemática. Neste período surgem os cientistas, homens que dedicavam sua vida à procura do conhecimento e que por isso recebiam um salário. Será citado, agora, um breve comentário sobre a contribuição dos matemáticos considerados os mais importantes e influentes deste período.

·  Euclides (306?-283? a.c.)

Seu trabalho mais famoso é a coleção “Os elementos”, obra em 13 volumes, que contém aplicações da álgebra à geometria, baseados numa dedução estritamente lógica de teoremas, postulados, definições e axiomas. Até os dias de hoje, este é o livro mais impresso em matemática.

·  Arquimedes (287 – 212 a.c.)

É considerado o maior matemático do período helenístico e de toda antiguidade.
Suas maiores contribuições foram feitas no campo que hoje denominamos “cálculo integral”, por meio do seu “método de exaustão”. Arquimedes também deu importante contribuição na mecânica e engenharia, com o desenvolvimento de vários artefatos, principalmente militares. Foi morto por um soldado romano quando da queda de Siracusa.

·  Apolônio de Perga (247-205 a.c.)

Com Apolônio há uma volta à tradicional geometria grega. Ele escreveu um tratado de oito livros sobre as cônicas (parábola, elipse e hipérbole), introduzidas como seções de um cone circular.

·  Ptolomeu (150 d.c.)

Publicou o “Almagesto”, obra de astronomia com superior maestria e originalidade. Nesta obra encontra-se a fórmula para o seno e o cosseno da soma e da diferença de dois ângulos e um começo da geometria esférica.

·  Nicómaco de Gerasa

Publicou “Introdução à aritmética”, que é a exposição mais completa da aritmética pitagórica. Muito do que sabemos sobre Pitágoras provém desta publicação.

·  Diofanto

Publicou “Arithmética”, a qual recebeu uma forte influência oriental. Este trabalho trata da solução e análise de equações indeterminadas.
Com o domínio da Grécia e do oriente pelos romanos, estas regiões tornaram-se colônias governadas por administradores romanos. A estrutura econômica do império romano permanecia baseada na agricultura. Com o declínio do mercado de escravos a economia entrou em decadência e existiam poucos homens a fomentar uma ciência, mesmo medíocre.

Podemos, então, determinar uma relação entre a crise da matemática e a crise do sistema social, pois a queda de Atenas significou o fim do império da democracia escravagista. Esta crise social influenciou a crise nas ciências que culminou com o fechamento da escola de Atenas, marcando com isto o fim da matemática grega clássica.

Podemos observar que as descobertas matemáticas estão relacionadas com os avanços obtidos pela sociedade, tanto intelectuais como comerciais.

 Se no princípio a matemática era essencialmente prática, visto que as sociedades eram rudimentares, com o desenvolvimento destas sociedades a matemática também evoluiu, passando de uma simples ferramenta que auxiliava aos problemas práticos para uma ciência que serviu como chave para analisar o mundo e a natureza em que vivemos.

Todas as descobertas matemáticas realizadas pelos povos pré-históricos, egípcios e babilônicos serviram como subsídio para a matemática desenvolvida pelos gregos.

Esta matemática grega foi, e continua sendo, a base de nossa matemática. Todo o desenvolvimento tecnológico obtido em nossos dias tem como ponto de partida a matemática grega.

Assim, sem a axiomatização desenvolvida pelos gregos, não haveria o desenvolvimento da matemática abstrata e dos conceitos, postulados, definições e axiomas tão necessários à nossa matemática.

Da matemática da antiguidade, fundamental a nós hoje, podemos citar: processos de contagem, numeração, trigonometria, astronomia, geometria plana e volumes de corpos sólidos, sistema sexagesimal, equações quadráticas e bi-quadráticas, relações métricas nos triângulos retângulos, seções cônicas e o método de exaustão, que foi o germe do cálculo integral.

16 - O NASCIMENTO DO CÁLCULO
Para realizar um estudo completo sobre as origens, desenvolvimento e conseqüências do Cálculo, necessitaríamos de uma pesquisa muito extensa cujo resultado final seria, sem dúvida, um texto longo que estaria além do propósito deste trabalho como um todo.
O nosso intuito é o de dar uma apresentação geral que contenha alguns fatos importantes que permeiam os acontecimentos históricos relacionados com a construção desta poderosa ferramenta da matemática: o Cálculo.
Além disso, gostaríamos que ficasse claro que essa construção é o resultado de diversas contribuições de muitos personagens, como ocorre de modo geral, com o conhecimento humano.
Convidamos também o usuário a apreciar alguns fatos interessantes que estão presentes no site, assim como encorajá-lo na visita às páginas dos matemáticos que aqui aparecem para conhecer um pouco a história de cada um.
As contribuições dos matemáticos para o nascimento do Cálculo são inúmeras.
Muitos deles, mesmo que de forma imprecisa ou não rigorosa, já utilizavam conceitos do Cálculo para resolver vários problemas - por exemplo, Cavalieri, Barrow, Fermat e Kepler. Nesse tempo ainda não havia uma sistematização, no sentido de uma construção logicamente estruturada.
 A união das partes conhecidas e utilizadas até então, aliada ao desenvolvimento e aperfeiçoamento das técnicas, aconteceu com Newton e Leibniz que deram origem aos fundamentos mais importantes do Cálculo: as Derivadas e as Integrais.
O Cálculo pode ser dividido em duas partes: uma relacionada às derivadas ou Cálculo Diferencial e outra parte relacionada às integrais, ou Cálculo Integral.
O Cálculo Diferencial: alguns fatos históricos
O aparecimento e desenvolvimento do Cálculo Diferencial estão ambos intimamente ligados à questão das tangentes. Desde a época dos Gregos antigos, já se conhecia a reta tangente como sendo uma reta que intercepta uma curva em um único ponto, generalizando a situação observada no caso da circunferência. Na realidade, essa idéia é muito imprecisa e precisamos de um tratamento bem mais rigoroso para a questão da tangente à uma curva.
Arquimedes e Apolônio utilizavam métodos geométricos, que diferiam entre si, para a determinação de tangentes a parábolas, elipses e hipérboles. Vários outros métodos para resolver o problema de encontrar a tangente a uma curva em um ponto foram desenvolvidos ao longo da história.
Na realidade, após os Gregos, o interesse por tangentes a curvas reapareceu no século XVII, como parte do desenvolvimento da geometria analítica. Como equações eram então utilizadas para descrever curvas, a quantidade e variedade de curvas estudadas aumentou bastante em comparação àquelas conhecidas na época clássica.
 A introdução de símbolos algébricos como uma ferramenta para estudar a geometria das curvas também contribuiu para o desenvolvimento do conceito de derivada. Com o tempo, o tratamento se tornou mais algébrico e menos geométrico, proporcionando um contínuo progresso no desenvolvimento dos conceitos de funções, derivadas, integrais e outros tantos tópicos relacionados ao Cálculo.
Pierre de Fermat foi o primeiro a considerar a idéia de famílias de curvas. Ele chamou, por exemplo, de "parábolas maiores", as curvas cujas equações eram do tipo, Descrição: http://ecalculo.if.usp.br/historia/imagens/hist_derivadas/image1.gif, onde k é constante e n = 2, 3, 4, etc.
Fermat elaborou um método algébrico para determinar os pontos de máximo e os pontos de mínimo de uma função. Ele encontrava geometricamente os pontos onde a reta tangente ao gráfico tinha inclinação zero, ou seja, buscava os pontos em que o coeficiente angular da reta tangente era nulo. Escreveu a Descartes explicando o seu método que é basicamente utilizado ainda hoje. Na realidade, devido a esse trabalho, que estava intimamente relacionado com as derivadas, Lagrange afirmou considerar Fermat o inventor do Cálculo.
A questão de encontrar a tangente a uma curva é, historicamente, de especial importância, pois, ao que parece, foi o que Newton pensou quando teve um insight sobre como utilizar tangentes para estudar o movimento dos planetas. O método para a determinação foi desenvolvido pelo antecessor de Newton, Isaac Barrow, e consistia no limite de uma corda com os pontos aproximando-se entre si.
Acredita-se que um dia, enquanto observava o movimento dos planetas, Newton tenha-se perguntado porque as órbitas dos planetas eram curvas, pois se fossem formadas por segmentos de retas seriam muito mais fáceis de serem estudadas. Por que não considerá-las como um conjunto de pequenas retas que, aproximadamente, representariam o movimento daquela curva? Este simples, porém genial insight significou para Newton o começo de uma longa e frutífera produção científica que englobou, entre outras coisas, as derivadas, as integrais e toda a base da mecânica clássica.
O estudo do movimento dos corpos havia começado de maneira sistemática com Galileo. Entretanto ele estudara o movimento geometricamente, utilizando as proposições de Euclides e as propriedades das cônicas de Apolônio para chegar a relações entre distância, velocidade e aceleração, que, hoje em dia, são aplicações básicas da derivada.
Vários matemáticos estavam, a essa altura, estudando problemas relacionados ao movimento. Torricelli e Barrow consideraram o problema do movimento com velocidades variadas. Já se sabia que a taxa de variação pontual - derivada - do deslocamento era a velocidade e que a operação inversa da velocidade era o deslocamento. Isso mostra que já existia uma certa noção da operação inversa da derivada, sendo que a idéia de que a integral era inversa da derivada era familiar a Barrow.
Para Newton, o movimento era a base fundamental para o estudo das curvas e de outros tópicos relacionados ao Cálculo. Newton escreveu o seu tratado sobre fluxions em 1666. Ele pensou em uma partícula descrevendo uma curva com duas linhas que se movimentavam e que representavam o sistema de coordenadas. A velocidade horizontal e a velocidade vertical eram as fluxões de x e y associadas ao fluxo do tempo. Os fluents eram x e y. Em linguagem moderna, seria a derivada de x com relação ao tempo, ou simplesmente x'(t) e seria analogamente a derivada de y com relação ao tempo ou ainda y'(t).
 Tanto os nomes quanto as notações de Newton foram deixadas de lado ao longo dos anos, prevalecendo a notação criada por Leibniz. Vale a pena notar, entretanto, que é ainda bastante utilizada pelos físicos quando a derivada em questão é em relação ao tempo e é dada a função deslocamento x=x(t); nesse caso, será a velocidade e será a aceleração.
Embora Newton tenha desenvolvido e revisto o seu Cálculo entre 1666 e 1671, nada foi publicado até 1736. Ele havia apenas mostrado os seus manuscritos para alguns colegas e amigos.
Leibniz, em 1672, enquanto vivia em Paris, encontrou-se com Huygens e com ele aprendeu muito e recebeu muitos conselhos que constituíram um forte impulso para que viesse a desenvolver o seu Cálculo Diferencial e Integral. Nesse período, ele estabeleceu contato com muitos dos matemáticos respeitados da Royal Society e, dentre eles, destaca-se Barrow. Leibniz teve acesso aos seus trabalhos e estabeleceu um longo período de correspondências. Seu Cálculo Diferencial tinha uma fundamentação bem diferente daquele de Newton.
Leibniz não estudou o movimento para chegar aos conceitos de derivada e integral. Ele pensou nas variáveis x e y como grandezas que variavam por uma sucessão de valores infinitamente pequenos. Introduziu dx e dy como a diferença entre esses valores sucessivos. Embora Leibniz não tenha usado como definição de derivada, ele sabia que representava o coeficiente angular da tangente.
Há um capítulo especial na história do Cálculo: uma longa e quase sempre inescrupulosa disputa entre Newton e Leibniz sobre quem havia "criado" o Cálculo. Ambos não pouparam acusações picantes para descrever o outro e os seus feitos e geraram uma discussão acalorada no meio científico da época sobre quem seria a mais importante autoridade em Cálculo. Essa situação chegou a tal ponto que os matemáticos que viviam no Reino Unido se distanciaram durante um período bastante longo dos matemáticos do continente. Enquanto o Cálculo "Leibniziano" ganhava cada vez mais adeptos na Europa - entre esses a família Bernoulli - os matemáticos da "ilha", como dizem alguns historiadores, davam mais atenção às pompas e circunstâncias criadas para a cerimônia fúnebre de Newton na Abadia de Westminister. Durante ainda algum tempo, esses matemáticos ficaram um pouco "ilhados" e, quando voltaram a estabelecer relações com os europeus do continente, haviam não só perdido parte do avanço do Cálculo como também não compreendiam muito bem a notação "Leibniziana" então largamente utilizada.
Carl B. Boyer, em seu livro A History of Mathematics , afirma: Como conseqüência da infeliz disputa entre Newton e Leibniz, os matemáticos britânicos ficaram de certa forma alienados dos trabalhos do continente (...) e o desenvolvimento da Matemática não conseguiu acompanhar o rápido progresso dos outros países da Europa ao longo do século XVIII.
Apesar das diferenças, tanto Newton quanto Leibniz reconheceram até certo ponto a importância do "adversário". Leibniz disse: Considerando a Matemática desde o início do mundo até a época de Newton, o que ele fez é sem dúvida a melhor metade. Newton, por sua vez, na primeira edição do Principia, admitiu que Leibniz possuía um método semelhante ao seu. Infelizmente, na terceira edição, após o ápice das desavenças, Newton retirou a referência a Leibniz.
O desenvolvimento do Cálculo continuou com muitos outros matemáticos, como, por exemplo, Jacques Bernoulli, Johann Bernoulli, MacLaurin, Agnesi, Euler, d'Alembert, Lagrange e Cauchy.
17 - A MATEMÁTICA NA IDADE MODERNA
Do Renascimento à Revolução Industrial

A expansão da Matemática – Séculos XV e XVI

            A queda de Constantinopla frente aos Turcos, faz com que haja um grande afluxo de refugiados para a Itália, principalmente. Por este motivo, vários escritos da civilização grega retornam ao ocidente. Assim, a Europa volta a ter contato com os originais gregos, agora acrescidos das influências orientais.
            Outro fator extremamente importante para a difusão dos conhecimentos matemáticos foi a invenção da imprensa de tipos móveis. A comercialização dos livros pode ser aprimorada, o que resultou numa disseminação dos conhecimentos de uma maneira rápida e significativamente mais barata.
            O desenvolvimento dos conceitos matemáticos, aritmética, álgebra e trigonometria, estavam centrados, em sua maioria, nas cidades italianas e nas cidades de Nuremberg, Viena e Praga. Estas eram cidades mercantis em desenvolvimento, propiciando um campo fértil para a expansão matemática.
            A população volta a ter interesse pela educação. Começam a aparecer textos populares de aritmética, em linguagem clássica (latim) para os eruditos e na língua mãe, com o fim de propiciar o ensino aos jovens que tem interesse em seguir a carreira comercial.
            A expansão matemática foi tão grande neste período que é impossível relatar todos os avanços obtidos. A matemática passa a ser entendida por especialistas.

·         Nicholas Cusa (1401-1464)

Filho de um pescador pobre, entrou para a igreja e rapidamente se tornou cardeal. Foi governador de Roma. Seus trabalhos matemáticos consistem na reforma do calendário e nas tentativas de quadrar o círculo e trisseccionar o ângulo.

·         Georg Von Peurbach (1423-1463).

Aluno de Nicholas Cusa. Escreveu tratados de aritmética, astronomia e uma tábua de senos. Iniciou uma tradução latina, a partir do grego, do “Almagesto” de Ptolomeu.

·         Johann Muller (1436-1476)

Conhecido como “Regiomontanus”. Estudou com Peurbach e tomou para si o trabalho de traduzir o “Almagesto”. Traduziu também textos de Apolônio, Herão e Arquimedes. Publicou “De Triangulis Omnimodis”, primeira exposição européia sistemática de trigonometria plana e esférica, independente da astronomia. Montou um observatório e, com uma prensa tipográfica escreveu tratados de astronomia. Segundo historiadores construiu uma água mecânica que batia as asas.

·         Nicolas Chuquet

É considerado o mais brilhante matemático francês do século XV. Também se dedicou à medicina. Publicou uma obra de aritmética intitulada: “Triparty em la science des nombres”. Este trabalho enfoca cálculo com números racionais e irracionais e teoria das equações.

·         Luca Pacioli (1445-1509)

Luca Pacioli era um padre franciscano que se dedicou à compilações de álgebra, aritmética e geometria. Publicou “Summa de arithmetica, geométrica, proportioni et proportionalita”. Este trabalho, que contém muito dos assuntos encontrados no “Líber Abaci”, trata de operações fundamentais para a extração de raízes quadradas, escrituração mercantil, equações quadráticas, álgebra sincopada (p, para indicar mais). Publicou ainda “De divina proportione”, com ilustrações de sólidos geométricos feitas por Da Vinci, aluno de Pacioli.

·         Johann Widman (1460-???)

Credita-se a ele o uso, primeiramente, dos sinais de + e -. Estes símbolos eram usados para indicar excesso e deficiência.

·         Robert Recorde (1510-1558)

Deixou pelo menos cinco publicações, sendo “The ground of artes” o seu mais completo livro de aritmética, o qual atingiu 29 tiragens. Também era médico. Fez trabalhos sobre astronomia, geometria, medicina e álgebra.  Apresentou o sistema de Copérnico aos ingleses. É dele a introdução do símbolo (=) para a igualdade.

·         Michael Stifel (1486-1567)

Considerado o maior algebrista alemão do século XIV e XV. Trabalhou com álgebra, números racionais e irracionais. Associou uma progressão aritmética a uma progressão geométrica, antecipando assim a invenção dos logaritmos.

O feito matemático mais extraordinário realizado no século XVI foi a descoberta, por matemáticos italianos, da solução algébrica das equações cúbicas e quárticas.

·         Scipione del Ferro (1465-1526)

Professor de matemática da Universidade de Bolonha. Resolveu algebricamente, baseando seu trabalho em textos árabes, a cúbica x³+mx=n. Não publicou seu trabalho, mas revelou seu segredo ao discípulo Antônio Fior.

·         Nicolo Fontana de Brescia (1499-1557)

Mais conhecido como Tartaglia descobriu a solução para a cúbica x³+px²=n. Aprendeu a ler e a escrever sozinho com um caderno que roubara. Foi o primeiro a usar matemática na ciência dos tiros de artilharia. Escreveu a melhor aritmética dos século XVI com tópicos de operações numéricas e da aritmética mercantil. Publicou também edições de Euclides e Arquimedes.

·         Girolamo cardano (1501-1576)

Gênio matemático e médico. Após jurar segredo, conseguiu a fórmula de Tartaglia e publicou a mesma como sendo sua no livro “Ars Magna”. Cardano ainda conseguiu apresentar a solução da equação quártica por meios algébricos neste mesmo livro. Quem resolveu a equação foi seu discípulo Ludovico Ferrari, mas Cardano publicou a resolução. Publicou vários textos sobre aritmética, astronomia, física, medicina.

·         François Viéte (1540-1603)

Maior matemático francês do século XVI. Advogado e membro do parlamento francês. Dedicava-se à matemática por lazer. Tem uma vasta obra, com trabalhos em trigonometria, álgebra e geometria.  “Cânon mathematicus seu ad triangula” é o primeiro livro que desenvolve triângulos planos e esféricos. Muito do simbolismo algébrico se deve a ele. Trabalhou também com teoria das equações. Ele aplicou álgebra à trigonometria e à geometria. Mostrou que o problema da trissecção e da duplicação de um ângulo dependem da solução de uma equação cúbica.

·         Christopher Clavius (1537-1612)

Matemático alemão, publicou uma edição dos “Elementos” de Euclides. Escreveu textos de aritmética, álgebra, trigonometria e astronomia. Participou na reforma do calendário gregoriano.

·         Simon Stevin (1548-1620)

Matemático dos Países Baixos, integrou a armada holandesa. Fez a exposição mais antiga das frações decimais. Contribuiu para a física na área de estática e hidrostática. Também contribuiu em engenharia militar. Inventou um veículo movido a vela que transportava 28 pessoas.

·         Nicolau Copérnico (1473-1543)

Astrônomo polonês. Estudou leis, medicina e astronomia. Apresentou em 1530 sua teoria para o universo, ano de sua morte. Para apresentar este trabalho necessitou de desenvolvimentos na trigonometria. Sua teoria para o universo diferia da usual para a época, a teoria Aristotélica.

·         Georg Joachim Rhaeticus (1514-1576)

Matemático teutônico, aluno de Copérnico. Durante doze anos trabalhou na construção de tábuas trigonométricas notáveis e úteis até hoje. Estas tábuas referem-se as seis funções trigonométricas atuais. Graças a ele que os trabalhos de Copérnico foram publicados.

As realizações matemáticas no século XVI constam de: expansão da álgebra simbólica, padronização do cálculo com numerais indo-arábicos, uso comum de frações decimais, resolução de equações cúbica e quárticas por meios algébricos, aprimoramento da trigonometria e progressão da teoria das equações. Estava preparado o campo para a grande expansão que viria a ocorrer a partir do século XVII até o século XIX.

Consolidação da Matemática – Séculos XVII e XVIII

            O século XVII é extremamente importante no desenvolvimento da matemática. Tivemos o desenvolvimento dos logaritmos, por Napier; contribuição para notação e codificação da álgebra, por Harriot e Ougthred; fundação da ciência da dinâmica por Galileu; Kepler anunciou suas leis do movimento planetário; Desargues e Pascal inauguraram um novo campo da geometria pura; Descartes desenvolveu a geometria analítica; Fermat desenvolveu os fundamentos da teoria dos números; Huygens contribuiu para a teoria das probabilidades; e no final do século, Newton e Leibniz contribuíram para o desenvolvimento do cálculo.
            Este grande desenvolvimento da matemática neste período foi partilhado por todas as atividades intelectuais e só foi possível graças aos avanços políticos, econômicos e sociais da época.
            Com a política mais favorável no norte da Europa e a superação da barreira do frio e da escuridão durante os longos meses de inverno, há um deslocamento da atividade matemática da Itália para a França e Inglaterra.
            Começa uma crescente pesquisa matemática, fora do alcance do leitor comum, pois a maior parte da matemática desse período só pode ser entendida por especialistas.
            A astronomia, a navegação, o comércio, a engenharia e a guerra fizeram com que as demandas por cálculos rápidos e precisos crescessem rapidamente. Quatro invenções contribuíram muito para este progresso: notação indo-arábica, frações decimais, logaritmos e modernos computadores.
            Serão analisadas as contribuições de vários matemáticos deste período para o desenvolvimento da matemática.

·         John Napier (1550-1617)

Grande parte de sua vida foi dedicada a combater o catolicismo. Publicou um artigo intitulado “A plaine discouery of the whole reuelation of saint John”, propondo provar que o papa era o anticristo. Profetizou também sobre máquinas de guerra, acompanhado de projetos e diagramas. A metralhadora, o submarino e o tanque de guerra concretizaram estas previsões.
Napier deixou como legado quatro produtos de seu gênio: os logaritmos, um dispositivo para reproduzir fórmulas usadas na resolução de triângulos esféricos, fórmulas trigonométricas úteis na resolução de triângulos esféricos obliquângulos e um instrumento usado para multiplicações, divisões e extrair raízes quadradas de números.
Os logaritmos foram criados com o fim de transformar multiplicações e divisões em adições e subtrações. Esta abordagem foi publicada em 1614 em “Mirifici logarithmorum canonis descriptio”. Este trabalho foi complementado e aprimorado por Henry Briggs, professor de geometria de Gresham College de Londres. Os logaritmos de Briggs são, essencialmente, os logaritmos decimais. Logaritmo significa “número de razão”. Esta invenção de Napier foi utilizada por toda a Europa, em especial pelos astrônomos que necessitavam de uma maneira rápida e fácil de desenvolver seus cálculos extremamente lentos e complicados.

·         Thomas Harriot (1560-1621)

Matemático inglês que viveu no século XVI, mas teve sua obra publicada somente no século XVII. Foi o fundador da escola de algebristas dos ingleses. Publicou “Artis analyticae práxis”, o qual analisa a teoria das equações de primeiro, segundo, terceiro e quarto graus. Este assuntos também estão na obra de Viéte, mas Harriot dá um tratamento mais completo. Também foi astrônomo, sendo ele o descobridor das manchas solares e observado os satélites de júpiter, independente de Galileu.

·         William Ougthred (1574-1660)

Clérigo inglês, publicou “Clavis mathematicae”, no qual dá ênfase aos símbolos matemáticos, contribuindo com mais de 150 deles. São adotados por nós hoje: o símbolo de multiplicação (x), os quatro pontos das proporções e o de diferença (-). Também tentou introduzir abreviações para as funções trigonométricas na obra “The circles of proportion”.

·         Galileu Galilei (1564-????)

Astrônomo italiano. Começou seus trabalhos matemáticos ao observar o balanço de um lustre em uma igreja. Observou que o período de oscilação do pêndulo independe da amplitude do arco de oscilação e da massa oscilante e sim do comprimento de sua haste. Formulou
Descrição: http://1.bp.blogspot.com/-0KKYsxXmWLI/TjSwDdAZzsI/AAAAAAAAAC0/eP7loKHlKSI/s1600/equa.gif   ao largar dois pedaços de metal com pesos diferentes e observar que ambos chegavam ao chão no mesmo momento. Deve-se a Galileu o moderno espírito científico de experiência aliada a teoria. Fundou a mecânica dos corpos em queda livre, fundamentou a dinâmica. Graças a estes fundamentos Newton conseguiu estruturar uma ciência. Por ser muito religiosos, vivam angustiado, pois suas teorias e descobertas contrariavam a teoria Aristotélica de mundo, o que desagradava a igreja. Foi obrigado a abjurar de suas teorias e até o fim de sua vida viveu em prisão domiciliar e seus livros foram postos no índex da igreja por dois séculos. Segundo Galileu:

 a bíblia não é e nunca pretendeu ser um texto de astronomia, biologia ou outra ciência qualquer”. (EVES, 2004) Para Galileu “a bíblia não foi criada para nos ensinar verdades científicas que podemos descobrir por conta própria, foi concebida como um livro para revelar verdades espirituais.” (EVES, 2004).

·         Johann Kepler (1571-1630)

Astrônomo alemão. Queria ser ministro luterano, mas um profundo interesse pela astronomia o levou a mudar de planos. Foi assistente do astrônomo sueco Tycho Brahe. Quando o mesmo faleceu subitamente, ele herdou a coleção de dados astronômicos sobre o movimento dos planetas de Brahe. Durante 21 anos ele trabalhou com zelo e paciência para conseguir formular, por meio de cálculos suas leis do movimento planetário. Essas lei são:

               i) os planetas movem-se em torno do sol em trajetórias elípticas com o sol num dos focos;
              ii) o raio vetor que liga um planeta ao sol varre áreas iguais em intervalos de tempo iguais, e
              iii)o quadrado de tempo para que um planeta complete sua revolução orbital é diretamente proporcional ao cubo do semi-eixo da órbita.



Essas leis são marcos fundamentais na história da astronomia e da matemática, pois para justificá-las, Newton foi levado a criar a mecânica celeste moderna. Além do que, 1800 anos depois que Apolônio desenvolveu as seções cônicas, foi determinada uma aplicação prática para as mesmas. Kepler também foi precursor do cálculo, pois para formular sua segunda lei ele necessitou de noções fundamentais do que hoje conhecemos como cálculo infinitesimal.
·       
     Gerard Desargues (1591-1661)

Engenheiro e Arquiteto francês, oficial do exército. Escreveu um tratado original sobre seções cônicas, nove anos após a morte de Kepler. Seu trabalho foi negligenciado e acabou sendo esquecido, junto com suas cópias, que foram destruídas. Em 1845, Michel Chasles encontrou uma cópia manuscrita do tratado, feita por Philippe de La Hire, discípulo de Desargues. Desde então este trabalho é considerado um clássico do desenvolvimento da geometria projetiva sintética. Este trabalho foi muito utilizado por Poncelet em suas teorizações.
·        
       Blaise Pascal (1623-1662)

Foi um dos poucos contemporâneos de Desargues que soube apreciar sua obra. Pascal foi matemático francês. Tinha uma saúde muito frágil e veio a falecer com 39 anos de idade. Durante sua curta vida apresentou muitas contribuições para o desenvolvimento da matemática. Aos 16 anos publicou um trabalho sobre seções cônicas, o qual Descartes duvidou de que fosse de sua autoria. Aos 19 anos inventou a primeira máquina de calcular. Aos 21 anos interessou-se sobre os trabalhos de Torricelli sobre pressão atmosférica. Com este interesse, deixou para a física “Principio da hidrodinâmica de Pascal”. Conduziu experiências sobre pressão dos fluidos e junto com Fermat lançou os fundamentos da teoria das probabilidades. 
Desargues e Pascal abriram o campo da geometria projetiva. Ao mesmo tempo, Descartes e Fermat abriam o campo da geometria analítica. Qual a diferença entre as duas? A geometria projetiva é um ramo da geometria, enquanto a geometria analítica é um método da geometria.

·         René Descartes (1596-1650)

Matemático e filósofo francês. Teve uma carreira militar durante vários anos, junto ao príncipe Mauricio de Orange. Em Paris, após sair da vida militar, se dedicou a construção de instrumentos ópticos. Depois, mudou-se para a Holanda, onde veio a se dedicar inteiramente à matemática e à filosofia. “Le monde” contém uma descrição física do universo. Abandonou a mesma, pois soube da condenação de Galileu pela igreja. Depois escreveu “”Discurso do método para bem conduzir a razão e procurar a verdade nas ciências”.  Este tratado tinha três apêndices: La diptrique, Lês météores, la geometrie. Neste último se encontra a base de todo o desenvolvimento da geometria analítica.
·        
      Pierre de Fermat (1601?-1665)

Matemático francês, que juntamente com Descartes, desenvolveu os fundamentos da geometria analítica. Em “Isogoge ad lócus planos et sólidos” encontramos a equação geral da reta e da circunferência e uma discussão sobre parábolas, elipses e hipérboles. Ao contrário de Descartes, Fermat partia de uma equação e então estudava o lugar geométrico correspondente. Fermat usou a notação de Viéte para escrever seu trabalho, o que acarretou em prejuízo para si. Fermat deixou muitos teoremas que foram comprovados com o passar dos anos. Atualmente, o “último teorema de Fermat” é o único que ainda não foi comprovado. xn+yn=zn para n>2. Este teorema é o que mais demonstrações erradas apresenta em todos os tempos.
·        
     Christiaan Huygens (1629-1695)

Matemático Holandês. Aos 21 anos publicou um trabalho questionando argumentos falsos usados para demonstrar a quadratura do circulo. Junto com seu irmão resolvereu muitas questões de astronomia de observação. Isto o levou a inventar o relógio de pêndulo, para ter meios mais precisos de medir o tempo. Escreveu o primeiro tratado formal sobre probabilidade e introduziu o conceito de esperança matemática.

A EXPANSÃO DA MATEMÁTICA – O CÁLCULO

            De todas as descobertas e desenvolvimentos obtidos pela matemática neste período, a mais notável e mais importante foi a invenção do cálculo por Newton e Leibniz. Com esta descoberta, a matemática passou a um plano superior e a história da matemática elementar, terminou.
            É interessante observar que o desenvolvimento do cálculo foi feito em ordem inversa ao modo como é ensinado nas universidades hoje. Primeiro desenvolveu-se o conceito de integração originado em processos somatórios ligados ao cálculo de áreas, volumes e comprimentos. Depois trabalhou-se com o conceito de diferenciação, baseado em problemas sobre tangentes à curvas, máximos e mínimos. Somente depois de algum tempo observou-se que integração e diferenciação eram operações inversas.
            Mesmo que estes conceitos tenham sido desenvolvidos, basicamente, no século XVII é necessário lembrar que a base deste desenvolvimento começou no século V a.C. com os gregos.
·         Paradoxos de Zenão
Há evidências de que na Grécia antiga se desenvolveram escolas de raciocínio matemático que abraçavam as seguintes premissas:

            i)uma grandeza pode ser subdividida indefinidamente, e
            ii)uma grandeza é formada de um número muito grande de partes atômicas indivisíveis.

O filósofo Zenão de Eléia chamou a atenção para as dificuldades ocultas nestas premissas através de paradoxos desenvolvidos, os quais influenciaram profundamente a matemática. Dois destes paradoxos, os quais tem a ver com o cálculo, são assim apresentados:

                i)Dicotomia: se um segmento de reta pode ser subdividido indefinidamente, então o movimento é impossível, pois para percorrê-lo é preciso primeiro alcançar seu ponto médio;
                ii)A flecha: se o tempo é formado de instantes atômicos indivisíveis, então uma flecha em movimento está sempre parada.
Qualquer que tenha sido a motivação para estes paradoxos, eles excluíram os infinitesimais.
·         Método de Exaustão de Eudoxo
Consta que Antífon teria antecipado a idéia de que, por sucessivas duplicações do número de lados de um polígono regular inscrito em um círculo, a diferença entre o círculo e o polígono, por fim terminaria. Mesmo muito contestada, esta abordagem apresentava o início do método de exaustão. O método de exaustão foi uma resposta da escola platônica aos paradoxos de Zenão e foi desenvolvido por Eudoxo. Este método consiste em admitir que uma grandeza possa ser subdividida indefinidamente.
De todos os matemáticos da antiguidade, quem melhor aproveitou este conceito em seus trabalhos foi Arquimedes. Em suas abordagens de áreas e volumes ele chegou a resultados muito próximos a algumas integrais definidas hoje, as quais estão presentes nos vários livros de cálculo.
·         O Método do Equilíbrio de Arquimedes
O método de exaustão é rigoroso, mas extremamente trabalhoso. Parte do princípio de que conhecida a fórmula, o método de exaustão é o caminho para prová-la.
No livro “O método”, descoberto em 1906, tratado escrito por Arquimedes, mostra que para determinar a área ou o volume, deve-se cortar a região correspondente num número muito grande de tiras planas ou fatias paralelas finas e (mentalmente) pendurar esses pedaços numa das alavancas dadas, de tal maneira a estabelecer o equilíbrio com uma figura de área ou volume e centróide conhecidos. Por este método, Arquimedes descobriu a fórmula do volume da esfera.
·         A Integração na Europa Ocidental
Somente por volta de 1450 os trabalhos de Arquimedes chegaram à Europa, através de uma tradução descoberta em Constantinopla e revisada por Regiomontanus e impressa em 1540.
            Johan Kepler foi um dos primeiros europeus ocidentais a utilizar o trabalho de Arquimedes. Kepler tinha pouca paciência com o rigor exigido pelo método de exaustão e para ganhar tempo e economizar trabalho começou a desenvolver meios de aprimorar este método.
            Bonaventura Cavalieri, aluno de Galileu, matemático brilhante, elaborou uma vasta obra que abrangia matemática, óptica e astronomia. Foi o responsável pela introdução dos logaritmos na Europa. No tratado “Geometria Indivisibilibus” ele apresenta o seu método dos indivisíveis. Este método cita Arquimedes e Demócrito, mas teve como inspiração o trabalho de Kepler para determinar áreas e volumes. Cavalieri apresentou alguns princípios:

               i)se duas porções planas são tais que toda reta secante a elas e paralela a uma reta dada determina nas porções segmentos de reta cuja razão é constante, então a razão entre as retas dessas porções é a mesma constante;
               ii)se dois sólidos são tais que todo plano secante a eles e paralelo a um plano dado determina nos sólidos secções cuja razão é constante, então a razão entre os volumes desses sólidos é a mesma constante.
Estes princípios representam ferramentas poderosas para o cálculo de áreas, volumes e comprimentos.

·         A Diferenciação

A diferenciação originou-se dos problemas relativos ao traçado de tangentes a curvas e problemas envolvendo máximos e mínimos. A exposição clara do método diferencial só é exposta de maneira mais precisa em 1629, por Pierre de Fermat.
Baseado na idéia de Kepler de que os incrementos de uma função tornam-se infinitesimais nas vizinhanças de um ponto de máximo ou de mínimo, Fermat transformou esse fato em um processo para determinar este pontos de máximo ou de mínimo. Este processo de Fermat tinha alguns pontos falhos: não distinguia entre valor máximo ou mínimo e que a condição da derivada de f(x) se anular não é suficiente para se ter um máximo ou um mínimo.
·        
       Wallis e Barrow

Estes dois matemáticos foram os predecessores imediatos de Newton na Inglaterra.
John Wallis (1616-1703) foi um dos matemáticos mais capazes de seu tempo. Ele foi o primeiro a ensinar um sistema de ensino para surdos. Na sua publicação “Arithmetica  infinitorum”  ele sistematiza e estende os métodos de Descartes e Cavalieri. Wallis foi o primeiro a explicar de maneira satisfatória o significado dos expoentes zero, negativos e fracionários, bem como a introdução do símbolo de infinito (¥).
Isaac Barrow (1630-1677) é considerado o maior especialista em grego de seu tempo. Extremamente produtivo em matemática, física, astronomia e teologia. Foi o primeiro ocupante da cátedra lucasiana de Cambridge. Ao renunciar à cátedra, para se tornar o capelão de Carlos II, indicou para seu lugar, seu discípulo: Isaac Newton.
Neste momento do desenvolvimento do cálculo, muito já havia sido feito: integrações, cubaturas, quadraturas, inicio de processos de diferenciação, idéia inicial de limites e o teorema fundamental já estava desenvolvido. Faltava ainda a criação de um simbolismo geral com um conjunto sistemático de regras analíticas formais que fundamentasse a matéria. É neste ponto que surgem Newton, Leibniz e Cauchy. Newton e Leibniz criaram um cálculo manipulável e proveitoso, enquanto Cauchy fez o redesenvolvimento dos conceitos fundamentais em bases aceitáveis.
·        
 OS “CRIADORES” DO CÁLCULO

Isaac Newton(1642-1727) desde jovem possuía habilidade para projetar miniaturas mecânicas. Consta que ele construiu um moinho de brinquedo para moer farinha usando a força motriz de um rato. Construiu ainda um relógio de madeira movido a água. Foi no período em que esteve em Cambridge que escreveu seus maiores trabalhos. Durante o desenvolvimento do cálculo se viu envolvido em discussões de baixo nível, alimentadas por terceiros, com Leibniz. Os matemáticos ingleses tomaram o partido de Newton e voltaram as costas ao continente, razão pela qual, por cem anos, o progresso matemático foi retardado na Inglaterra. São trabalhos por ele desenvolvidos:

* teoria ondulatória da luz;
* álgebra e teoria das equações;
* lei da gravitação;
* mecânica celeste;
* justificação das leis do movimento planetário de Kepler.

Gottfried Wilhelm Leibniz (1646-????) é considerado um gênio universal do século XVII e rival de Newton no desenvolvimento do cálculo. Com 12 anos dominava todo o conhecimento matemático, filosófico, teológico e de direito corrente no período. Nesta idade começou a escrever “Characteristica generalis”, que envolvia matemática universal, que foi ponto de partida para a álgebra simbólica de Boole. Trabalhou durante sua vida no serviço diplomático na corte de Hanover. Leibniz desenvolveu o teorema fundamental do cálculo, grande parte da notação para o assunto e fórmulas elementares de diferenciação.
 Com a invenção do seu cálculo, entre 1673 e 1676, ele utilizou pela primeira vez o símbolo de integral


 derivado da primeira letra latina Summa (soma), que tinha por objetivo indicar uma soma de indivisíveis. Logo depois ele já escrevia diferenciais como conhecemos hoje.
Também é creditado a Leibniz a criação da teoria dos determinantes, apesar de que Seki Kowa, japonês, dez anos antes, já havia feito considerações importantes sobre o assunto.
O primeiro texto de cálculo foi publicado em 1696 pelo marquês de L’hospital (1661-1674) com lições que recebera de seu professor particular Johann Bernoulli.

·         Exploração do Cálculo

Depois que Newton e Leibniz definiram as regras para o cálculo, vários matemáticos concentraram sua aplicação na mecânica. Muitos destes matemáticos estavam ligados à filósofos do iluminismo.

       A família Bernoulli

Desde o final do século XVII até a época atual esta família tem produzido cientistas em todas as gerações. Nikolaus Bernoulli (1623-1708), Jakob (1654-1705), Nikolaus (1662-1716), Johann (1667-1748), Nikolaus I (1687-1759), Nikolaus II (1695-1726) e Daniel (1700-1782) fizeram grandes contribuições ao desenvolvimento da matemática. Dentre elas, podemos citar: cálculo diferencial e integral, equações diferenciais ordinárias, coordenadas polares, estudo da catenária, estudo da lemniscata, da espiral logarítmica e da isócrona, figuras isoperimétricas, permutações, combinações e distribuições binomiais. Além disto, apresentaram trabalhos nas áreas de astronomia, física, fisiologia e hidrodinâmica. Teoria das cordas vibrantes e séries trigonométricas.
·       
      Leonhard Euler

Euler foi aluno de Johann Bernoulli. Euler, matemático suíço, considerado o maior escritor de textos matemáticos. Suas publicações totalizam 886 artigos, textos e livros matemáticos. Muitos deles escritos quando Euler já estava parcialmente cego ou mesmo cego. Escreveu textos em matemática pura e aplicada. Seus textos trazem publicações sobre todos os assuntos matemáticos conhecidos na época. Laplace, Lagrange e Gauss conheceram e seguiram Euler em todos os seus trabalhos.
Existem livros de Euler sobre hidráulica, construção de navios e sobre artilharia, bem como sobre ciência natural. Mesmo com Euler sendo o principal matemático neste período, na França vários matemáticos viram a trazer perfeição às teorias de Newton.

·         Pierre de Maupertius

Matemático francês, conhecido como “o grande aplanador”, pois em 1736-1737 comandou uma expedição ao Peru e outra à Suíça onde mediram um arco de meridiano e um arco de longitude, vindo a validar a teoria de Newton de que a terra é achatada nos pólos. Maupertius tentou formular um princípio geral pelo qual as leis do universo pudessem ser unificadas. Combinou sua formulação como uma prova da existência de Deus, sendo ridicularizado pelo filósofo Voltaire.

·         Aléxis Claude Clairaut

Aos 18 anos de idade publicou um tratado na tentativa de tratar a geometria analítica e diferencial das curvas espaciais e um tratado sobre o equilíbrio dos fluidos e a atração dos elipsóides de revolução. Também fez contribuições para os integrais de linha e equações diferenciais.

·         Jean Lê Rond D’Alembert

Matemático brilhante, escreveu tratados sobre vários assuntos na matemática, dentre estes podemos destacar: método de reduzir a dinâmica dos corpos sólidos à estártica, hidrodinâmica, aerodinâmica, teoria das cordas vibrantes, teoria das equações diferenciais às derivadas parciais e noções de limites.

·         Joseph-Louis Lagrange

Matemático francês, que nasceu em Turim, Itália. Apresentou contribuições muito importantes em cálculo das variações, partindo dos trabalhos de Euler. Usando a formulação dele aplicou a sua teoria em problemas de dinâmica. Em 1767 apresentou métodos para separar raízes reais de uma equação algébrica e para aproximá-las, por meio de frações contínuas. Trabalhou em equações de grau n>4.

·         Pierre Simon Laplace

É considerado o último dos matemáticos do século XVIII, mas não menos importante que os demais. O seu tratado “Mecanique céleste” foi o culminar dos trabalhos de Newton, Clairaut, D’Alembert, Euler e Lagrange. No texto “Theorie analytique des probabilités” Laplace apresenta toda a estruturação dos conceitos que envolvem o cálculo das probabilidades. 
Muitos matemáticos, ao final do século XVIII expressaram o sentimento de que as descobertas matemáticas estavam saturadas. Segundo eles, os matemáticos das gerações vindouras apenas iriam desvendar problemas de menor envergadura. Desde a antiga babilônia até Laplace e Euler, a astronomia guiou e inspirou as mais sublimes descobertas na matemática. No fim do século XVIII este desenvolvimento parecia ter atingido seu máximo. Mas, uma nova geração, inspirada pela revolução francesa e impulsionada pela revolução industrial veio demonstrar que este pessimismo era infundado.

 
BIBLIOGRAFIA


 Fonte: Dicionário Enciclopédico Conhecer - Abril Cultural

BARBEIRO, Heródoto. Et alli. História. Ed. Scipione. 2005
BERUTTI, Flávio. História. Ed. Saraiva. 2004.
BOYER, Carl B. História da matemática. 2º ed. SP. Edgard Blucher, 2003.
EVES, Howard. Introdução à história da matemática. 2º ed. UNICAMP,  2002.
STRUIK, História concisa das matemáticas. Gradiva. 1989.
LINTZ, Rubens G. História da matemática. FURB. 1999.
http://www.somatematica.com.br/historia.php
http://usematematica.blogspot.com
www.brasilescola.com
www.boaaula.com.br















  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 comentários:

Postar um comentário

Este espaço é seu! Deixe aqui suas observações e perguntas, logo que puder, responderei a todos!
Divirtam-se!!!